From f2eacea60f84e8771d8bdfa2c2ea7d624e89d583 Mon Sep 17 00:00:00 2001 From: siveshs Date: Fri, 2 Jul 2010 03:46:53 +0000 Subject: correcting a mistake --- ClassJune26.page | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ClassJune26.page b/ClassJune26.page index 4a23318..b5454a4 100644 --- a/ClassJune26.page +++ b/ClassJune26.page @@ -162,7 +162,7 @@ and add them up just fine, so we can exponentiate complex values of $z$. We know what happens to real values, what happens to pure imaginary ones? Let $y\in\mathbb{R}$. Then -$$\begin{array} +$$\begin{array}{ccl} e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\ & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ -- cgit v1.2.3