From ee48d33495ca9c062ca2c2eba4b298e171ef6673 Mon Sep 17 00:00:00 2001 From: siveshs Date: Fri, 2 Jul 2010 03:45:57 +0000 Subject: still testing --- Fourier Series.page | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Fourier Series.page b/Fourier Series.page index 61253ee..751b1c3 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -23,7 +23,7 @@ $\qquad\sin(2x) = 2\sin(x)\cos(x)$ Rearranging, $$\begin{array}{ccl} -\sin(2x).\cos(x) & = & [2\sin(x)\cos(x)]\cos(x)\\ +\sin(2x).\cos(x) & = & [2\sin(x)\cos(x)].\cos(x)\\ & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ & = & \cos y+i\sin y\end{array}$$ -- cgit v1.2.3