From e5e3a0620c1bee420a836df7255f3e453262056d Mon Sep 17 00:00:00 2001 From: Opheliar99 <> Date: Sun, 4 Jul 2010 02:23:33 +0000 Subject: posted solutions of 2 and 3 in pset2 --- Problem Set 2.page | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/Problem Set 2.page b/Problem Set 2.page index 02a8f48..7918c1a 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -40,9 +40,8 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$ 2. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, -$ \sin^4(x) dx = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, - -$ \= \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. +$ \sin^4 x = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, +$ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. If we express any periodic function $f(x)$ as -- cgit v1.2.3