From b9ec4dbbe7de3b1b22b01101a6f90e54a7cef500 Mon Sep 17 00:00:00 2001 From: Opheliar99 <> Date: Sun, 4 Jul 2010 04:58:55 +0000 Subject: posted solutions of 2 and 3 in pset2 --- Problem Set 2.page | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Problem Set 2.page b/Problem Set 2.page index 06528fc..218287f 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -85,7 +85,7 @@ $m = -2 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\pi}/4$, Then, -$\sum |a_n|^2 = {\sqrt{2\pi}/4}^2 + {- \sqrt{2\pi}/2}^2 + {\sqrt{2\pi}/4}^2 = \frac{3 \pi}{4}$. +$\sum |a_n|^2 = {(\sqrt{2\pi}/4)}^2 + {(- \sqrt{2\pi}/2)}^2 + {(\sqrt{2\pi}/4)}^2 = \frac{3 \pi}{4}$. And, it was shown in Prob 2 that $\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4}$. -- cgit v1.2.3