From 703b678fb47b34894a45a7a96d9fdf2768fecdad Mon Sep 17 00:00:00 2001 From: Opheliar99 <> Date: Sun, 4 Jul 2010 04:43:25 +0000 Subject: posted solutions of 2 and 3 in pset2 --- Problem Set 2.page | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/Problem Set 2.page b/Problem Set 2.page index 6eb1452..a26852a 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -73,6 +73,12 @@ $= \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{i 2x}+e^{-i 2x}-2}{4} e^{-imx} dx $= \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{-i (m-2)x}+e^{-i (m+2)x}-2e^{-imx}}{4} dx$. +Because $\int_0^{2\pi} e^{inx} dx = 2\pi$ for $n = 0$ and $\int_0^{2\pi} e^{inx} dx = 0$ for $n \neq 0$, + +$m = 2 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\pi}/4$, +$m = 0 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi \times (-2) = - \sqrt{2\pi}/2$, +$m = -2 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\pi}/4$, + ## Cardinality -- cgit v1.2.3