From 640784256be7ef84a0c59b6981c9ad0439361e28 Mon Sep 17 00:00:00 2001 From: siveshs Date: Sat, 3 Jul 2010 04:46:22 +0000 Subject: section 3 editing --- Fourier Series.page | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Fourier Series.page b/Fourier Series.page index 127d211..e339854 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -159,7 +159,7 @@ $$ Extending this principle to the case of an n-dimensional vector: -Let $f$ be the periodic function expressed as $ f= \Sigma a_n \frac{1}{\sqrt{2\pi}} \, e^{inx} = \Sigma a_n \, f_n$ where $a_n \in \mathbb C$ +Let $f$ be the periodic function expressed as $f= \Sigma a_n \frac{1}{\sqrt{2\pi}} \, e^{inx} = \Sigma a_n \, f_n$ where $a_n \in \mathbb C$ ##Proving that this function is does indeed completely represent $f$ -- cgit v1.2.3