From 413b07d78a4b1f0bd292ff982e061862b003e9cf Mon Sep 17 00:00:00 2001 From: Opheliar99 <> Date: Sun, 4 Jul 2010 02:22:35 +0000 Subject: posted solutions of 2 and 3 in pset2 --- Problem Set 2.page | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Problem Set 2.page b/Problem Set 2.page index 4811096..02a8f48 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -40,9 +40,9 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$ 2. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, -$\int_0^{2\pi} \sin^4(x) dx = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, +$ \sin^4(x) dx = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, -$ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. +$ \= \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. If we express any periodic function $f(x)$ as -- cgit v1.2.3