From 37bad950149205dbc8a52f1b88d3a11911305859 Mon Sep 17 00:00:00 2001 From: Opheliar99 <> Date: Mon, 5 Jul 2010 04:03:33 +0000 Subject: posted solutions of 2 and 3 in pset2 --- Problem Set 2.page | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Problem Set 2.page b/Problem Set 2.page index d62036a..a6ed816 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -69,7 +69,7 @@ $$ \begin{array}{ccl} a_m &=& \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \sin^2(x) e^{-i Because $\int_0^{2\pi} e^{inx} dx = 2\pi$ for $n = 0$ and $\int_0^{2\pi} e^{inx} dx = 0$ for $n \neq 0$, we have -$$a_2 = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\ pi}/4,$$ +$$a_2 = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \frac{\sqrt{2\pi}}{4},$$ $$a_0 = \frac{1}{4 \sqrt{2\pi}} \times 2\pi \times (-2) = - \frac{\sqrt{2\pi}}{2},$$ -- cgit v1.2.3