From 3691af780fe86b90c4e52c4c6124a8b2dd58d8a3 Mon Sep 17 00:00:00 2001 From: joshuab <> Date: Mon, 12 Jul 2010 22:40:03 +0000 Subject: typo fixed --- ClassJune26.page | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ClassJune26.page b/ClassJune26.page index b5454a4..b5dff79 100644 --- a/ClassJune26.page +++ b/ClassJune26.page @@ -216,7 +216,7 @@ angle, and $df$ is linear, its image must bisect too, that is, the little square must become a little *square*. Numerically, this means that $\left(\begin{array}{c} \frac{\partial u}{\partial y}\\ -\frac{\partial u}{\partial y}\end{array}\right)$ is $\left(\begin{array}{c} +\frac{\partial v}{\partial y}\end{array}\right)$ is $\left(\begin{array}{c} \frac{\partial u}{\partial x}\\ \frac{\partial v}{\partial x}\end{array}\right)$ rotated by $\pi/2$. If we write $\left(\begin{array}{c} @@ -226,7 +226,7 @@ b\end{array}\right)=\left(\begin{array}{c} \frac{\partial v}{\partial x}\end{array}\right)$ , then $\left(\begin{array}{c} \frac{\partial u}{\partial y}\\ -\frac{\partial u}{\partial y}\end{array}\right)=\left(\begin{array}{c} +\frac{\partial v}{\partial y}\end{array}\right)=\left(\begin{array}{c} -b\\ a\end{array}\right).$ Put another way, the linear transformation $df(z)$ has the form -- cgit v1.2.3