summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Fourier Series.page6
1 files changed, 3 insertions, 3 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index b603912..c90f37e 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -8,9 +8,9 @@ To show that Fourier series is plausible, let us consider some arbitrary trignom
$$\begin{array}{ccl}
e^{iy} = 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\
- & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\
- & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\
- & = & \cos y+i\sin y\end{array}$$
+ = 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\
+ = (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\
+ = \cos y+i\sin y\end{array}$$
##What is the Fourier series actually?</b>