diff options
-rw-r--r-- | Problem Set 2.page | 6 |
1 files changed, 4 insertions, 2 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index 5788847..cc84acb 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -47,15 +47,17 @@ If we express any periodic function $f(x)$ as $f(x) = \sum a_n f_n(x)$, where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$, $f_0(x) = \frac{1}{\sqrt{2\pi}}$, + The Fourier coefficients for the above functions are: $a_{-4} = a_{4} = \sqrt{2\pi} \times 1/16$, $a_{-2} = a_{2} = - \sqrt{2\pi} \times 4/16$, $a_0 = \sqrt{2\pi} \times 6/16$ + Since $a_m = < f_m, f >$, -$\int_0^{2\pi} \sin^4(x) dx = <1, f> = \sqrt{2\pi} \times $<f_0, f>$ +$\int_0^{2\pi} \sin^4(x) dx = <1, f> = \sqrt{2\pi} \times $<f_0, f>$$ -= \sqrt{2\pi} \times a_0 = \frac{3 \pi}{4}$ +$= \sqrt{2\pi} \times a_0 = \frac{3 \pi}{4}$ ## Cardinality |