diff options
-rw-r--r-- | Problem Set 2.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index 51968f8..abb923b 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -40,7 +40,7 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$ 2. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, -$ {\sin}^4 x = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, +$ \sin^4 x = \frac{{( e^{ix}-e^{-ix})}^{4}}{16}$, $ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. If we express any periodic function $f(x)$ as |