summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Fourier Series.page6
1 files changed, 3 insertions, 3 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index e01441b..c7e26e2 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -5,12 +5,12 @@ We first begin with a few basic identities on the size of sets. Show that the se
##Why Fourier series is plausible?</b>
To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines:
-<<<<<<< edited
+
$\sin^2(x) = ?$
$\sin^2(x) = ?$
-=======
+
$\sin^2(x) \tab = \tab ?$
->>>>>>> 1912254d86a8c3b7254873663aeb813e628d51d8
+
$$\begin{array}{ccl}
& = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\
& = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\