aboutsummaryrefslogtreecommitdiffstats
path: root/little_schemer.scm
blob: 8a31425062295829da3878f76113856b09cf2dcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Play-along log to The Little Schemer by Friedman and Felleisen
; Jan 2008, bryan newbold

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Preface: define and test primative

(define atom?
  (lambda (x)
    (and (not (pair? x)) (not (null? x)))))

(atom? (quote ()))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 01: Toys

(car '(c b a)) ; returns c
(cdr '(c b a)) ; returns '(b a)
;(car ()) ; gives an error, () is null (but is still a list)

; [[ Law of Car ]]
; The primative car is defind only for non-empty lists.
 
; [[ Law of Cdr ]]
; The primative cdr is defined only for non-empty lists. The cdr of any 
; non-empty list is always another list.

(cons 2 3) ; returns (2 . 3), though book says undefined.
(cons 'a ()) ; returns (a)

; [[ Law of Cons ]]
; The primative cons takes two arguments. The second argument to cons must be
; a list. The result is a list.

(null? ()) ; #t
(null? 3) ; #f
;(null? (() ())); error
;(null? ('() '())) ; error
(null? '(() ())) ; #f
(null? 'asdf) ; #f, book says undefined

;(cdr (1)) ; error!
(cdr '(1)) ; reurns ()

; [[ Law of Null? ]]
; The primative null? is defined only for lists.

; [[ Law of Eq? ]]
; The primative eq? takes two arguments. Each must be a non-numeric atom.

; in practice some numbers can be eq? ?

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 02: Do It, Do It Again, and Again, and Again...

(define lat?
  (lambda (l)
    (cond
     ((null? l) #t)
     ((atom? (car l)) (lat? (cdr l)))
     (else #f))))

; lat = list of atoms
(lat? '(a b c d)) ; #t
(lat? '('(1 2 3) 4 5 6)) ; #f
(lat? ()) ; #t

(define member?
  (lambda (a lat)
    (cond
     ((null? lat) #f)
     (else (or (eq? (car lat) a)
	       (member? a (cdr lat)))))))

(member? 'beef '(meat and potatoes and beef)) ; #t
(member? 'tofu ()) ; #f

; {{ The First Commandment }}
; When recurring on a list of atoms, lat, ask two questions about it:
; (null? lat) and else.
; When recurring on a number, n, ask two questions about it: (zero? n) and
; else.
; When recurring on a list of S-expressions, l, ask three questions about it: 
; (null? l), (atom? (car l)), and else.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 03: Cons the Magnificent

(define rember
  (lambda (a lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? (car lat) a) (cdr lat))
     (else (cons (car lat)
		 (rember a (cdr lat)))))))

(rember 'and '(peanut butter and jelly)) ; (peanut butter jelly)

; {{ The Second Commandment }}
; Use cons to build lists.

; returns list of first elements off  each list in a list of lists ;)
(define firsts
  (lambda (l)
    (cond
     ((null? l) ())
     (else (cons (car (car l)) (firsts (cdr l)))))))

(firsts '((a b c) (1 2 3) (j k l))) ; (a 1 j)

; {{ The Third Commandment }}
; When building a list, describe the first typical element, and then
; cons it onto the natural recursion.

(define insertR
  (lambda (new old lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? old (car lat)) (cons (car lat) (cons new (cdr lat))))
     (else (cons (car lat) (insertR new old (cdr lat)))))))

(insertR 'jalapeno 'and '(tacos tamales and salsa))
; (tacos tamales and jalapeno salsa)

(define insertL
  (lambda (new old lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? old (car lat)) (cons new lat))
     (else (cons (car lat) (insertL new old (cdr lat)))))))

(insertL 'now 'please '(do it please)) ; (do it now please)

(define subst
  (lambda (new old lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? old (car lat)) (cons new (cdr lat)))
     (else (cons (car lat) (subst new old (cdr lat)))))))

(subst 'both 'and '(meat and potatoes)) ; (meat both potatoes)

(define subst2
  (lambda (new o1 o2 lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? o1 (car lat)) (cons new (cdr lat)))
     ((eq? o2 (car lat)) (cons new (cdr lat)))
     (else (cons (car lat) (subst2 new o1 o2 (cdr lat)))))))

(subst2 'a 'q 'r '(a s d r q)) ; (a s d a q)
(subst2 'a 'q 'r '(a s q d r)) ; (a s a d r)

(define multirember
  (lambda (a lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? (car lat) a) (multirember a (cdr lat)))
     (else (cons (car lat) (multirember a (cdr lat)))))))

(multirember 'd '(a d b d s g r c d d d w r)) ; (a b s g r c w r)

; {{ The Fourth Commandment }}
; Always change at least one argument while recurring. It must be changed to
; be closer to termination. The changing argument must be tested in the
; termination condition: when using cdr, test temrination with null?.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 04: Numbers Games

(atom? 0) ; #t
(atom? 3.123123132) ; #t
(atom? -12i) ; #t

(define add1
  (lambda (n)
    (+ n 1)))

(add1 67)

(define sub1
  (lambda (n)
    (- n 1)))

(sub1 0) ; -1
(sub1 -12i) ; -1-12i
(sub1 +2i) ; -1+2i

(zero? 2) ; #f

; doesn't handle negatives!
(define o+
  (lambda (a b)
    (cond
     ((zero? b) a)
     (else (o+ (add1 a) (sub1 b))))))

(o+ 12 3)

(define o-
  (lambda (a b)
    (cond
     ((zero? b) a)
     (else (o- (sub1 a) (sub1 b))))))

(o- 12 3) ; 9
(o- 10 25) ; -15
;(o- 4 -1) ; infinite loop!

(zero? ()) ; #f

(define addtup
  (lambda (tup)
    (cond
     ((null? tup) 0)
     (else (o+ (car tup) (addtup (cdr tup)))))))

(addtup '(1 1 1 1 1)) ; 5
(addtup '()) ; 0

(define ox
  (lambda (a b)
    (cond
     ((zero? b) 0)
     (else (o+ a (ox a (sub1 b)))))))

(ox 4 4) ; 16
;(ox 12983761498 12983472) ; max recursion depth exceeded ;(
;(ox 39485 345) ; SLOW!

; {{ The Fourth Commandment }}
; Always change at least one argument while recurring. It must be changed to be
; closer to termination. The changing argument must be tested in the 
; termination condition: 
; when using cdr, test termination with null? and
; when using sub1, test termination with zero?.

; {{ The Fifth Commandment }}
; When building a value with +, always use 0 for the value of the terminating
; line, for adding 0 does not change the value of an addition.
; When building a value with x, always use 1 for the value of the terminating
; line, for multiplying by 1 does not change the value of a multiplication.
; When building a value with cons, always condsider () for the value of the
; terminating line.

(define tup+
  (lambda (a b)
    (cond
     ((or (null? a) (null? b)) ())
     (else (cons (o+ (car a) (car b)) (tup+ (cdr a) (cdr b)))))))
; the book uses 'and' instead of 'or' because it specifies the tups must
; be of equal length

(tup+ '(1 2 3 4 5) '(5 4 3 2 1)) ; (6 6 6 6 6)

; improved version
(define tup+
  (lambda (a b)
    (cond
     ((and (null? a) (null? b)) (quote ()))
     ((null? a) b)
     ((null? b) a)
     (else (cons (o+ (car a) (car b)) (tup+ (cdr a) (cdr b)))))))

(tup+ '(1 2 3 4 5) '(5 4)) ; (6 6 3 4 5)

(define o> 
  (lambda (a b)
    (cond
     ((zero? a) #f)
     ((zero? b) #t)
     (else (o> (sub1 a) (sub1 b))))))

(o> 5 6) ; #t
(o> 7 7) ; #f

(define length
  (lambda (lat)
    (cond
     ((null? lat) 0)
     (else (add1 (length (cdr lat)))))))
(length '(a b c d)) ; 4
(length (quote ())) ; 0

(define pick
  (lambda (n lat)
    (cond 
     ((zero? (sub1 n)) (car lat))
     (else (pick (sub1 n) (cdr lat))))))

(define rempick
  (lambda (n lat)
    (cond
     ((null? lat) (quote ()))
     ((zero? n) (cdr lat))
     (else (cons (car lat) (rempick (sub1 n) (cdr lat)))))))

(rempick 3 `(this sentance has like a billion words))

(define no-nums
  (lambda (lat)
    (cond
     ((null? lat) (quote ()))
     ((number? (car lat)) (no-nums (cdr lat)))
     (else (cons (car lat) (no-nums (cdr lat)))))))

(no-nums '(this 1 sentance has 56 other numbers 23 built-in))

(define all-nums
  (lambda (lat)
    (cond
     ((null? lat) (quote ()))
     ((number? (car lat)) (cons (car lat) (all-nums (cdr lat))))
     (else (all-nums (cdr lat))))))

(all-nums '(this 1 sentance has 56 other numbers 23 built-in))

(define eqan?
  (lambda (a b)
    (cond
     ((and (number? a) (number? b)) (= a b))
     ((or (number? a) (number? b)) #f)
     (else (eq? a b)))))

(eq? 1 1) ; #t
(eqan? 2 3) ; #f

(define occur
  (lambda (a lat)
    (cond
     ((null? lat) 0)
     ((eq? a (car lat)) (add1 (occur a (cdr lat))))
     (else (occur a (cdr lat))))))

(occur 'n '(a n d that's all n folks!)) ; 2
(occur 123 '(1 2 3 4)) ; 0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 05: Oh My Gawd: It's full of Stars

(define rember*
  (lambda (a l)
    (cond
     ((null? l) (quote ()))
     ((atom? (car l)) (cond
		       ((eq? a (car l)) (cdr l))
		       (else (cons (car l) (rember* a (cdr l))))))
     (else (cons (rember* a (car l)) (rember* a (cdr l)))))))

(rember* 'sauce '(((tomato sauce))
		  ((bean) sauce)
		  (and ((flying)) sauce)))

(define insertR*
  (lambda (new old l)
    (cond
     ((null? l) (quote ()))
     ((atom? (car l)) (cond
		       ((eq? old (car l)) (cons (car l) (cons new (cdr l))))
		       (else (cons (car l) (insertR* new old (cdr l))))))
     (else (cons (insertR* new old (car l)) (insertR* new old (cdr l)))))))

(insertR* 'roast 'chuck '((how much (wood))
			  could
			  ((a (wood) chuck))
			  (((chuck)))
			  (if (a) ((wood chuck)))
			  could chuck wood))

(define occur*
  (lambda (a l)
    (cond
     ((null? l) 0)
     ((atom? (car l)) (cond 
		       ((eq? (car l) a) (add1 (occur* a (cdr l))))
		       (else (occur* a (cdr l)))))
     (else (o+ (occur* a (car l)) (occur* a (cdr l)))))))

(occur* 'banana '((banana)
		  (split ((((banana ice)))
			  (cream (banana))
			  sherbet))
		  (banana)
		  (bread)
		  (banana brandy)))

(define subst*
  (lambda (new old l)
    (cond
     ((null? l) (quote ()))
     ((atom? (car l)) (cond
		       ((eq? old (car l)) (cons new (subst* new old (cdr l))))
		       (else (cons (car l) (subst* new old (cdr l))))))
     (else (cons (subst* new old (car l)) (subst* new old (cdr l)))))))

(subst* 'orange 'banana '((banana)
			  (split ((((banana ice)))
				  (cream (banana))
				  sherbet))
			  (banana)
			  (bread)
			  (banana brandy)))

(define insertL*
  (lambda (new old l)
    (cond
     ((null? l) (quote ()))
     ((atom? (car l)) (cond
		       ((eq? old (car l)) 
			(cons new (cons
				   (car l)
				   (insertL* new old (cdr l)))))
		       (else (cons (car l) (insertL* new old (cdr l))))))
     (else (cons (insertL* new old (car l)) (insertL* new old (cdr l)))))))

(insertL* 'pecker 'chuck '((how much (wood))
			   could
			   ((a (wood) chuck))
			   (((chuck)))
			   (id (a) ((wood chuck)))
			   could chuck wood))

(define member*
  (lambda (a l)
    (cond
     ((null? l) #f)
     ((atom? (car l)) (cond
		       ((eq? a (car l)) #t)
		       (else (member* a (cdr l)))))
     (else (or (member* a (car l)) (member* a (cdr l)))))))

(member* 'chips '((potato (chips ((with) fish) (chips))))) ; #t
(member* 'beef '(meat ((and potatoes)) (with brocolli))) ; #f

; list must not contain null list!
(define leftmost
  (lambda (l)
    (cond
     ((null? l) (quote ()))
     ((atom? (car l)) (car l))
     (else (leftmost (car l))))))

(leftmost '(((hot) (tuna (and))) cheese))

(define eqlist?
  (lambda (a b)
    (cond
     ((and (null? a) (null? b)) #t)
     ((or (null? a) (null? b)) #f)
     ((and (atom? (car a)) (atom? (car b))) 
      (and (eqan? (car a) (car b))
	   (and (eqlist? (cdr a) (cdr b)))))
     ((or (atom? (car a)) (atom? (car b))) #f)
     (else (and (eqlist? (car a) (car b)) (eqlist? (cdr a) (cdr b)))))))

(eqlist?
 '(beef ((sausage)) (and (soda)))
 '(beef ((sausage)) (and (soda)))) ; #t

(eqlist?
 '(beef ((sausag)) (and (soda)))
 '(beef ((sausage)) (and))) ; #f

(eqlist? '(ff (1 2) (a)) '(ff (1 2) (b))) ; #f

(eqan? 'sausag 'sausage) ; #f

; new definition allows removal of S-expressions
(define rember
  (lambda (s l)
    (cond 
     ((null? l) (quote ()))
     ((equal? s (car l)) (cdr l))
     (else (cons (car l) (rember s (cdr l)))))))

; these next two I just copied after the fact, didn't think I would
; need them at the time
(define equal?
  (lambda (a b)
    (cond
     ((and (atom? a) (atom? b)) (eqan? a b))
     ((or (atom? a) (atom? b)) #f)
     (else (eqlist? a b)))))

(equal? '(this ((is more) complicated))
	'(this ((is more) complicated))) ; #t
(equal? '(this ((is more) complicated))
	'(this ((is) complicated))) ; #f
(equal? '4' '(4 5)) ; #f

(define rember
  (lambda (s l)
    (cond
     ((null? l) (quote ()))
     ((equal? (car l) s) (cdr l))
     (else (cons (car l) (rember s (cdr l)))))))

(rember 'q '(a b e d q))
(rember '4 '(1 2 3 (4 5) 8))
(rember '(4 5) '(1 2 3 (4 5) 6 7 8))

; {{ The Sixth Commandment }}
; Simplify only after the function is correct.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 06: Shadows

(define numbered?
  (lambda (aexp)
    (cond
     ((null? aexp) #f)
     ((atom? aexp) (number? aexp))
     ((or (eq? (car (cdr aexp)) (quote +))
	  (eq? (car (cdr aexp)) (quote -))
	  (eq? (car (cdr aexp)) (quote ^)))
      (and (numbered? (car aexp)) (numbered? (car (cdr (cdr aexp))))))
     (else #f))))

(numbered? '(1 + 3)) ; #t
(numbered? '((4 ^ 3) - 4)) ; #t
(numbered? '(a + 2 + (r ^ 2))) ; #f
(numbered? '(1 _ 3 + 5 + Q)) ; #f
(numbered? '(1 + 4 ^ 8 + r)) ; #t???? should only have two expressions
(numbered? '((1 + 4) ^ (8 + r))) ; #f

;book likes to make assumptions, namely that aexp is definately an algebraic
;expression
(define numbered?
  (lambda (aexp)
    (cond
     ((atom? aexp) (number? aexp))
     (else (and (numbered? (car aexp))
		(numbered? (car (cdr (cdr aexp)))))))))

(numbered? '1)
(numbered? '(1 + 1))


(define value
  (lambda (aexp)
    (cond
     ((atom? aexp) aexp)
     ((eq? (car (cdr aexp)) (quote +)) (+ (value (car aexp))
					  (value (car (cdr (cdr aexp))))))
     ((eq? (car (cdr aexp)) (quote -)) (- (value (car aexp))
					  (value (car (cdr (cdr aexp))))))
     ((eq? (car (cdr aexp)) (quote ^)) 
      (expt (value (car aexp))
	    (value (car (cdr (cdr aexp)))))))))

(value '(1 + 1))
(value '(3 ^ 3))
(value '(5 - (2 ^ 2))) 

(define 1st-sub-exp
  (lambda (aexp)
    (car aexp)))

(define 2nd-sub-exp
  (lambda (aexp)
    (car (cdr (cdr aexp)))))

(define operator
  (lambda (aexp)
    (car (cdr aexp))))

; {{ The Seventh Commandment }}
; Recur on the subpart that are of the same nature:
; * on the sublists of a list.
; * on the subexpressions of an arthmetic expression.

; {{ The Eighth Commandment }}
; Use help functions to abstract from representations.

(define sero?
  (lambda (n)
    (null? n)))

(sero? '()) ; #t
(sero? '(() ())) ; #f

(define edd1
  (lambda (n)
    (cons (quote ()) n)))

(define zub1
  (lambda (n)
    (cdr n)))

;(define o+
;  (lambda (n m)
;    (cond
;     ((sero? m) n)
;     (else (edd1 (o+ n (zub1 m)))))))

;(o+ '(() ()) '(() () ())) ; (() () () () ())

;(lat? (() () () () ())) ; error!

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 07: Friends and Relations

(define set?
  (lambda (lat)
    (cond
     ((null? lat) #t)
     ((member? (car lat) (cdr lat)) #f)
     (else (set? (cdr lat))))))

(set? '(this is a sentance with no repeats)) ; #t
(set? '()) ; #t
(set? '(this is a sentance with repeats, so this is not a set)); #f

(define makeset
  (lambda (lat)
    (cond
     ((null? lat) (quote ()))
     ((member? (car lat) (cdr lat)) (makeset (cdr lat)))
     (else (cons (car lat) (makeset (cdr lat)))))))

(makeset '(a b c b c c c d e f))

; is every element of the first in the second?
(define subset?
  (lambda (a b)
    (cond
     ((null? a) #t)
     ((member? (car a) b) (subset? (cdr a) b))
     (else #f))))

(subset? '() '(1 2 3)) ; #t
(subset? '(a b c) '(1 4 b 6 c 1 a)) ; #t
(subset? '(a b c) '(1 4 b 6 1 a)) ; #f

(define eqset?
  (lambda (a b)
    (and (subset? a b) (subset? b a))))

(eqset? '(1 2 3 4) '(3 4 1 2)) ; #t
(eqset? '(1 2 3 4 5) '(3 4 1 2)) ; #f

(define intersect? 
  (lambda (a b)
    (cond
     ((null? a) #f)
     (else (or (member? (car a) b) (intersect? (cdr a) b))))))

(intersect? '(a b c) '(1 2 3)) ; #f
(intersect? '(a B c) '(1 2 3 B 5)) ; #t

(define intersect
  (lambda (a b)
    (cond
     ((null? a) (quote ()))
     ((member? (car a) b) (cons (car a) (intersect (cdr a) b)))
     (else (intersect (cdr a) b)))))

(intersect '(a b c) '(1 2 3)) ; ()
(intersect '(a b c) '(1 b c 4 5)) ; (b c)

(define union
  (lambda (a b)
    (cond
     ((null? a) b)
     ((member? (car a) b) (union (cdr a) b))
     (else (union (cdr a) (cons (car a) b))))))

(union '(a b c) '(1 2 3))
(union '(a b c) '(a b 3))

(define intersectall 
  (lambda (l-set)
    (cond
     ((null? (cdr l-set)) (car l-set))
     (else (intersect (car l-set) (intersectall (cdr l-set)))))))

(intersectall '((a b c) (c a d e) (e f g h a b))) ; (a)

(define a-pair?
  (lambda (x)
    (cond
     ((null? x) #f)
     ((atom? x) #f)
     ((null? (cdr x)) #f)
     ((null? (cdr (cdr x))) #t)
     (else #f))))

(define first
  (lambda (p) (car p)))

(define second 
  (lambda (p) (car (cdr p))))

(define build
  (lambda (a b) (cons a (cons b (quote ())))))

(define third
  (lambda (p) (car (cdr (cdr p)))))

; a rel is a relation: a list of pairs

(firsts '((a b) (c d) (e f))) ; # (a c e), from an earlier chapter

(define fun?
  (lambda (rel)
    (set? (firsts rel))))

(define revrel
  (lambda (rel)
    (cond
     ((null? rel) (quote ()))
     (else (cons (build (second (car rel)) (first (car rel)))
		 (revrel (cdr rel)))))))

(revrel '((a b) (1 2) (here there)))

(define revpair
  (lambda (p)
    (build (second p) (first p))))

(define revrel
  (lambda (rel)
    (cond
     ((null? rel) (quote ()))
     (else (cons (revpair (car rel)) (revrel (cdr rel)))))))

(define fullfun?
  (lambda (fun)
    (set? (seconds fun))))

(define one-to-one?
  (lambda (fun)
    (fun? (revrel fun))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 08: Lambda the Ultimate

(define rember-f
  (lambda (test? a l)
    (cond
     ((null? l) (quote ()))
     ((test? a (car l)) (rember-f test? a (cdr l)))
     (else (cons (car l) (rember-f test? a (cdr l)))))))

(rember-f equal? '(pop corn) '(lemonade (pop corn) and (cake)))

; Currying: Moses Schonfinkel and Haskell Curry

(define eq?-c
  (lambda (a)
    (lambda (x)
      (eq? x a))))

((eq?-c 'salad) 'salad) ; #t
(define eq?-salad (eq?-c 'salad))
(eq?-salad 'salad) ; #t

(define rember-f
  (lambda (test?)
    (lambda (a l)
      (cond
       ((null? l) (quote ()))
       ((test? a (car l)) ((rember-f test?) a (cdr l)))
       (else (cons (car l) ((rember-f test?) a (cdr l))))))))

(define rember-eq? (rember-f eq?))
(rember-eq? 'tuna '(tuna salad is good))

(define insertL-f
  (lambda (test?)
    (lambda (new old l)
      (cond
       ((null? l) (quote ()))
       ((test? (car l) old)
	(cons new (cons old (cdr l))))
       (else (cons (car l)
		   ((insertL-f test?) new old (cdr l))))))))

(define seqL
  (lambda (new old l)
    (cons new (cons old l))))

(define seqR
  (lambda (new old l)
    (cons old (cons new l))))

(define insert-g
  (lambda (seq)
    (lambda (new old l)
      (cond
       ((null? l) (quote ()))
       ((eq? (car l) old) (seq new old (cdr l)))
       (else (cons (car l) ((insert-g seq) new old (cdr l))))))))

(define insertL (insert-g seqL))
(define insertR (insert-g seqR))
(define insertL (insert-g
		 (lambda (new old l)
		   (cons new (cons old l)))))

(insertL 'BUT 'then '(where but for the end then))

(define seqS
  (lambda (new old l) (cons new l)))

(define subst (insert-g seqS))

(subst 'both 'and '(meat and potatoes))

; {{ The Ninth Commandment }}
; Abstract common patterns with a new function.

(define atom-to-function
  (lambda (x)
    (cond
     ((eq? x (quote +)) +)
     ((eq? x (quote x)) ox)
     (else expt))))

(expt 4 4) ; 256
(+ 4 4) ; 8
(ox 4 4)
(o+ 4 4)

(atom-to-function (operator '(+ 5 3))) ; plus function

(define value
  (lambda (nexp)
    (cond
     ((atom? nexp) nexp)
     (else
      ((atom-to-function (operator nexp))
       (value (1st-sub-exp nexp))
       (value (2nd-sub-exp nexp)))))))

(value '(4 + 2))

(define multirember-f
  (lambda (test?)
    (lambda (a lat)
      (cond
       ((null? lat) (quote ()))
       ((test? a (car lat)) ((multirember-f test?) a (cdr lat)))
       (else (cons (car lat) ((multirember-f test?) a (cdr lat))))))))

((multirember-f eq?) 'tuna '(shrimp salad tuna salad and tuna))

(define eq?-tuna (eq?-c (quote tuna)))
(eq?-tuna (quote tuna)) ; #t

(define multiremberT
  (lambda (test? lat)
    (cond
     ((null? lat) (quote ()))
     ((test? (car lat)) (multiremberT test? (cdr lat)))
     (else (cons (car lat) (multiremberT test? (cdr lat)))))))

(multiremberT eq?-tuna '(shrimp salad tuna salad and tuna))

(define a-friend
  (lambda (x y)
    (null? y)))

; col is a collector

(define multirember&co
  (lambda (a lat col)
    (cond
     ((null? lat) (col (quote ()) (quote ())))
     ((eq? (car lat) a) (multirember&co 
			 a 
			 (cdr lat)
			 (lambda (newlat seen)
			   (col newlat (cons (car lat) seen)))))
     (else (multirember&co a (cdr lat) 
			   (lambda (newlat seen)
			     (col (cons (car lat) newlat) seen)))))))

(define new-friend
  (lambda (newlat seen)
    (a-friend newlat (cons (quote tuna) seen))))

; {{ The Tenth Commandment }}
; Build functions to collect more than one value at a time.

(define multiinsertL
  (lambda (new old lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? (car lat) old) (cons new
				(multiinsertL new old (cdr lat))))
     (else (cons (car lat) (multiinsertL new old (cdr lat)))))))

(define multiinsertR
  (lambda (new old lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? (car lat) old) (cons new
				(multiinsertR new old (cdr lat))))
     (else (cons (car lat) (multiinsertR new old (cdr lat)))))))

(define multiinsertLR
  (lambda (new oldL oldR lat)
    (cond
     ((null? lat) (quote ()))
     ((eq? (car lat) oldL) 
      (cons new (cons oldL
		      (multiinsertLR new oldL oldR (cdr lat)))))
     ((eq? (car lat) oldR)
      (cons new (multiinsertLR new oldL oldR (cdr lat))))
     (else (cons (car lat) (multiinsertLR new oldL oldR (cdr lat)))))))

(define multiinsertLR&co
 (lambda (new oldL oldR lat col)
   (cond
    ((null? lat) (col (quote ()) 0 0))
    ((eq? (car lat) oldL) 
     (multiinsertLR&co new oldL oldR (cdr lat)
		       (lambda (newlat L R)
			 (col (cons new
				    (cons oldL newlat)) (add1 L) R))))
    ((eq? (car lat) oldR)
     (multiinsertLR&co new oldL oldR (cdr lat)
		       (lambda (newlat L R)
			 (col (cons oldR (cons new newlat)) L (add1 R)))))
    (else (multiinsertLR&co new oldL oldR
			    (cdr lat)
			    (lambda (newlat L R)
			      (col (cons (car lat) newlat)
				   L R)))))))

(multiinsertLR&co 'salty 'fish 'chips
		  '(chips and fish or fish and chips)
		  (lambda (lat L R)
		    R)) ; 2

(multiinsertLR&co 'salty 'fish 'chips
		  '(chips and fish or fish and chips)
		  (lambda (lat L R)
		    lat))

(define even?
  (lambda (n)
    (= (* (round (/ n 2)) 2) n)))

(round 3/2) ; 2
(= 1 1) ; #t
(/ 4 2) ; 2
(* 4 2) ; 8
(even? 3) ; #f

(define evens-only*
  (lambda (l)
    (cond
     ((null? l) (quote ()))
     ((atom? (car l)) (cond
		       ((even? (car l)) (cons (car l) 
					      (evens-only* (cdr l))))
		       (else (evens-only* (cdr l)))))
     (else (cons (evens-only* (car l)) (evens-only* (cdr l)))))))

(evens-only* '((9 1 2 8) 3 10 ((9 9) 7 6) 2))
; ((2 8) 10 (() 6) 2)

(define col-odds
  (lambda (l p s) l))

(define col-p
  (lambda (l p s) p))

(define col-s
  (lambda (l p s) s))

(define evens-only*&co
  (lambda (l col)
    (cond
     ((null? l) (col (quote ()) 1 0))
     ((atom? (car l)) 
      (cond
       ((even? (car l)) (evens-only*&co (cdr l)
					(lambda (newl p s)
					  (col (cons (car l) newl)
					       (* p (car l))
					       s))))
       (else (evens-only*&co (cdr l)
			     (lambda (newl p s)
			       (col newl
				    p
				    (+ s (car l))))))))
     (else
      (evens-only*&co (car l)
		      (lambda (al ap as)
			(evens-only*&co (cdr l)
					(lambda (dl dp ds)
					  (col (cons al dl)
					       (* ap dp)
					       (+ as ds))))))))))

(evens-only*&co '((9 1 2 8) 3 10 ((9 9) 7 6) 2)
		(lambda (newl p s)
		  (cons s (cons p newl)))) ; (38 1920 (2 8) 10 (() 6) 2)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 09: ... and Again, and Again, and Again, ...

(define looking
  (lambda (a lat)
    (keep-looking a (pick 1 lat) lat)))

; sorn is a symbol or a number

(define keep-looking
  (lambda (a sorn lat)
    (cond
     ((number? sorn) (keep-looking a (pick sorn lat) lat))
     (else (eq? sorn a)))))

(looking 'caviar '(6 2 4 caviar 5 7 3)) ; #t
(looking 'caviar '(6 2 grits caviar 5 7 3)) ; #f

; total functions terminate for all finite inputs?
; partial functions terminate for only some inputs?

(define shift
  (lambda (pair)
    (build (first (first pair))
	   (build (second (first pair))
		  (second pair)))))

(shift '((a b) c)); (a (b c))
;(shift '(a (b c))); error

; pora = pair or atom
(define align
  (lambda (pora)
    (cond
     ((atom? pora) pora)
     ((a-pair? (first pora)) (align (shift pora)))
     (else (build (first pora) (align (second pora)))))))

(define length*
  (lambda (pora)
    (cond
     ((atom? pora) l)
     (else (length* (first pora)) (length* (second pora))))))

(define weight*
  (lambda (pora)
    (cond
     ((atom? pora) 1)
     (else (+ (* 2 (weight* (first pora)))
	      (weight* (second pora)))))))

(weight* '((a b) c)) ; 7
(weight* '(a (b c))) ; 5

(define shuffle
  (lambda (pora)
    (cond
     ((atom? pora) pora)
     ((a-pair? (first pora)) (shuffle (revpair pora)))
     (else (build (first pora) (shuffle (second pora)))))))

(shuffle '(a b)) ; (a b)
; (shuffle '((a b) (c d))) ; infinite recursion

; Collatz function?
(define C
  (lambda (n)
    (cond
     ((one? n) 1)
     (else (cond
	    ((even? n) (C (/ n 2)))
	    (else (C (add1 (* 3 n)))))))))

; (C 0) ; infinite recursion?
(C 1) ; 1
(C 2) ; 1
(C 8) ; 1

; Ackermann function
(define A
  (lambda (n m)
    (cond
     ((zero? n) (add1 m))
     ((zero? m) (A (sub1 n) 1))
     (else (A (sub1 n) (A n (sub1 m)))))))

(A 1 0) ; 2
(A 2 2) ; 7
(A 3 3) ; 61
(A 3 4) ; 125
; (A 4 3) ; ocean boiling?

(define eternity
  (lambda (x) (eternity x)))

; got lost here a bit...

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Chapter 10: What is the Value of All of This?

(define new-entry build)

(define lookup-in-entry
  (lambda (name entry entry-f)
    (lookup-in-entry-help name
			  (first entry)
			  (second entry)
			  entry-f)))

(define lookup-in-entry-help
  (lambda (name names values entry-f)
    (cond
     ((null? names) (entry-f name))
     ((eq? (car names) name) (car values))
     (else (lookup-in-entry-help name (cdr names) (cdr values) entry-f)))))

(lookup-in-entry 'fish
		 '((teach a man to fish)
		   (1 2 3 4 5))
		 (lambda (x) x))

(define extend-table cons)

(define lookup-in-table
  (lambda (name table table-f)
    (cond
     ((null? table) (table-f name))
     (else (lookup-in-entry name 
			    (car table)
			    (lambda (n)
			      (lookup-in-table n (cdr table) table-f)))))))

(lookup-in-table 'fish
		 (extend-table '((teach a man to fish)
				 (1 2 3 4 5))
			       (quote ()))
		 (lambda (x) x))

(define atom-to-action
  (lambda (e)
    (cond
     ((number? e) *const)
     ((eq? e #t) *const)
     ((eq? e #f) *const)
     ((eq? e (quote cons)) *const)
     ((eq? e (quote car)) *const)
     ((eq? e (quote cdr)) *const)
     ((eq? e (quote null?)) *const)
     ((eq? e (quote eq?)) *const)
     ((eq? e (quote atom?)) *const)
     ((eq? e (quote zero?)) *const)
     ((eq? e (quote add1)) *const)
     ((eq? e (quote sub1)) *const)
     ((eq? e (quote number?)) *const)
     (else *identifier))))

(atom-to-action 'number?); *const

(define list-to-action
  (lambda (e)
    (cond
     ((atom? (car e)) (cond
		       ((eq? (car e) (quote quote)) *quote)
		       ((eq? (car e) (quote lambda)) *lambda)
		       ((eq? (car e) (quote cond)) *cond)
		       (else *application)))
     (else *application))))

(list-to-action '(lambda (x) x)) ; *lambda
(list-to-action '(cond ((eq? 1 2) #f) (else #t))) ; *cond

(define expression-to-action
  (lambda (e)
    (cond
     ((atom? e) (atom-to-action e))
     (else (list-to-action e)))))

(expression-to-action '#f) ; *const
(expression-to-action '(lambda (x) x)) ; *lambda

(define value
  (lambda (e)
    (meaning e (quote ()))))

(define meaning
  (lambda (e table)
    ((expression-to-action e) e table)))

(define *const
  (lambda (e table)
    (cond
     ((number? e) e)
     ((eq? e #t) #t)
     ((eq? e #f) #f)
     (else (build (quote primitive) e)))))

(*const 'asdf '()) ; (primitive asdf)

(define *quote
  (lambda (e table)
    (text-of e)))

(define text-of second)

(*quote '(quote stuff) '()) ; stuff

(define *identifier
  (lambda (e table)
    (lookup-in-table e table initial-table)))

; this will pass an error if called
(define initial-table
  (lambda (name)
    (car (quote ()))))

;(*identifier 'asdf '()) ; error
(*identifier 'a '( ((1 2 3 a b c) (first second third 1 2 3)))) ; 1

(define *lambda
  (lambda (e table)
    (build (quote non-primitive) (cons table (cdr e)))))

(*lambda '(lambda (a b) (cond ((eq? a b) b) (else a))) '( ((1 2 3) (a b c))))

(meaning '(lambda (x) (cons x y)) '(((y z) ((8) 9))))
; (non-primative ((((y z) ((8) 9)))) (x) (cons x y))

(define table-of first)
(define formals-of second)
(define body-of third)
(third '(a b c)) ; c

(define evcon
  (lambda (lines table)
    (cond
     ((else? (question-of (car lines)))
      (meaning (answer-of (car lines)) table))
     ((meaning (question-of (car lines)) table)
      (meaning (answer-of (car lines)) table))
     (else (evcon (cdr lines) table)))))

(define else?
  (lambda (x)
    (cond
     ((atom? x) (eq? x (quote else)))
     (else #f))))

(define question-of first)
(define answer-of second)

(define *cond
  (lambda (e table)
    (evcon (cond-lines-of e) table)))

(define cond-lines-of cdr)

(define evlis
  (lambda (args table)
    (cond
     ((null? args) (quote ()))
     (else (cons (meaning (car args) table)
		 (evlis (cdr args) table))))))

(evlis '(cons #f 4) '()) ; ((primitive cons) #f 4)

(define function-of car)
(define arguments-of cdr)

(define *application
  (lambda (e table)
    (apply
     (meaning (function-of e) table)
     (evlis (arguments-of e) table))))

(define primitive?
  (lambda (l)
    (eq? (first l) (quote primitive))))

(define non-primitive?
  (lambda (l)
    (eq? (first l) (quote non-primitive))))

(define apply
  (lambda (fun vals)
    (cond
     ((primitive? fun) (apply-primitive (second fun) vals))
     ((non-primitive? fun) (apply-closure (second fun) vals)))))

(define apply-primitive
  (lambda (name vals)
    (cond
     ((eq? name (quote cons)) (cons (first vals) (second vals)))
     ((eq? name (quote car)) (car (first vals)))
     ((eq? name (quote cdr)) (cdr (first vals)))
     ((eq? name (quote null?)) (null? (first vals)))
     ((eq? name (quote eq?)) (eq? (first vals) (second vals)))
     ((eq? name (quote atom?)) (:atom? (first vals)))
     ((eq? name (quote zero?)) (zero? (first vals)))
     ((eq? name (quote add1)) (add1 (first vals)))
     ((eq? name (quote sub1)) (sub1 (first vals)))
     ((eq? name (quote number?)) (number? (first vals))))))

(first '(a b))
(apply-primitive 'null? '(())) ; #t
(*application '(null? 2) '()) ; #f
(*application '(cdr (quote (a b))) '()) ; (b)
(*application '(eq? 2 (add1 1)) '()) ; #t

(define :atom?
  (lambda (x)
    (cond
     ((atom? x) #t)
     ((null? x) #f)
     ((eq? (car x) (quote primitive)) #t)
     ((eq? (car x) (quote non-primitive)) #t)
     (else #f))))

(define apply-closure
  (lambda (closure vals)
    (meaning (body-of closure)
	     (extend-table (new-entry (formals-of closure) vals)
			   (table-of closure)))))

(value '(zero? 0))
(value '(eq? 1 1))
(value '#f) ; #f
(value '(eq? 2 (add1 1))) ; #t

(value '((lambda (a b) (a (add1 b))) (lambda (c) (add1 c)) 4)) ; 6

(value '((lambda (x) x) 1)) ; 1

;wheeee!