I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2009-002 January 26, 2009

The Art of the Propagator

Alexey Radul and Gerald Jay Sussman

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

The Art of the Propagator

Alexey Radul & Gerald Jay Sussman
{axch,gjs}@Qmit.edu

December 13, 2008

Abstract

We develop a programming model built on the idea that the basic
computational elements are autonomous machines interconnected by
shared cells through which they communicate. Each machine con-
tinuously examines the cells it is interested in, and adds information
to some based on deductions it can make from information from the
others. This model makes it easy to smoothly combine expression-
oriented and constraint-based programming; it also easily accommo-
dates implicit incremental distributed search in ordinary programs.

This work builds on the original research of Guy Lewis Steele
Jr. [19] and was developed more recently with the help of Chris
Hanson.

9This document, together with complete supporting code, is available as an MIT
CSAIL Technical Report via http://dspace.mit.edu.

1

Contents

1 Introduction

2 Propagators

3 Partial Information

4 Multidirectional Computation
5 Generic Operations

6 Dependencies
6.1 Dependencies for Provenance
6.2 Dependencies for Alternate Worldviews
6.3 Dependencies for Implicit Search

\]

There is More to Do

Primitives for Section 2

Data Structure Definitions

Q @ »

Generic Primitives

C.1 Definitions
C.2 Imtervals
C.3 Supported Values L.
C.4 Truth Maintenance Systems
C.5 Conditionals.

References

10

14

17

20
21
25
33

39

41

41

43
43
44
45
46
47

49

1 Introduction

Conventional programming languages allow the value stored in a place to
come from only one source. We deliberately use “place” non-technically:
we mean the variables of the language, the components (slots, fields,
members, what have you) of compound data structures (pairs, arrays,
objects, etc), and the implicit transient storage given to the intermediate
results of subexpressions. The “source,” then, is whatever corresponding
construct (commonly: expression) produces the value that is to be put
in the place — it is nearly axiomatic that for each place there is exactly
one source.!

What happens if we relax this restriction, and allow the places to
receive values from multiple sources? Then an individual source need
no longer be responsible for computing the complete value that goes
into a place. Indeed, some partial knowledge about a value can already
be useful to some client, and can perhaps be augmented by some other
source later (which perhaps used that partial knowledge to deduce the
refinement!). Also, if places can accept values from multiple sources, we
need not decide in advance which computation will end up producing the
value that goes into a place. We can instead construct systems whose
information flow depends on how they are used.

We use the idea of a propagator network as a computational metaphor
for exploring the consequences of allowing places to accept information
from multiple sources. We study the design choices available within this
metaphor and their consequences for the resulting programming system.

2 Propagators

Our computational model is a network of autonomous machines, each
continuously examining its inputs and producing outputs when possible.
The inputs and outputs of a machine are shared with other machines so
that the outputs of one machine can be used as the inputs for another.
The shared communication mechanism is called a cell and the machines
that they interconnect are called propagators. As a consequence of this
viewpoint computational mechanisms are naturally seen as wiring dia-
grams.

As an elementary example of a propagator network we can implement

'In the presence of mutation, we mean places to be interpreted in spacetime: the value
occupying a variable during any particular period when that variable is not mutated
comes from just one source, and when the variable is mutated, the new value installed
there also comes from just one (presumably different) source.

the improvement step in Heron’s method of computing the square root
of a number in cell z. If we have a guess for the square root in cell g
we can put a better guess in cell h by the formula h = (g + x/g)/2. We
can describe such a network in a conventional programming language
(Scheme) by the following ugly code:

(define (heron-step x g h)
(compound-propagator (list x g) ;inputs
(lambda () ;how to build
(let ((x/g (make-cell))
(g+x/g (make-cell))
(two (make-cell)))
(divider x g x/g)
(adder g x/g g+x/g)
((constant 2) two)
(divider g+x/g two h)))))

This Scheme procedure takes three cells as inputs. It creates three
additional cells to be internal channels. It then specifies four propagators
that will carry out the computation, giving each one input cells and an
output cell. (But the constant propagator has only an output cell, two, in
which to smash the number 2.) The Scheme program is a wiring diagram
that constructs the network so specified.

To use this network we need to make cells to pass in to this network
constructor; we need to give some cells values, and we need to access the
values in other cells:

(define x (make-cell))
(define guess (make-cell))
(define better-guess (make-cell))

(heron-step x guess better-guess)

(add-content x 2)
(add-content guess 1.4)
(content better-guess)
1.4142857142857141

So this simple propagator network gave a reasonable answer.

Things get considerably more complicated when we want to iterate the
improvement to get a better answer. The propagator wiring diagram is
more analogous to assembly language than the expression languages that
we are used to.

What is interesting is the mechanism of iteration (or recursion) that
we use. A propagator does something only if it has inputs worth working
on. A compound propagator builds its body when presented with values

X
E good—enuf?
=
Y answer
f ——— * @ .
§ I
: Y
| 9 P —
: A sqrt—iter
; I
. 8
\ Heron—step
= @ -

| sqrt—iterg

Figure 1: A wiring-diagram description of the sqrt-iter network.

in all of the cells declared as its inputs. The sqrt-iter propagator (see
Figure 1) uses switches to connect inputs to the heron-step and the
recursive call only if the good-enuf? test is not satisfied. This is not the
only way to do recursion, but it is a good start.

(define (sqrt-network x answer)
(compound-propagator x
(lambda ()
(let ((one (make-cell)))
((constant 1.) one)
(sqrt-iter x one answer)))))

(define (sqrt-iter x g answer)
(compound-propagator (list x g)
(lambda ()
(let ((done (make-cell))
(not-done (make-cell))
(x-if-not-done (make-cell))
(g-if-not-done (make-cell))
(new-g (make-cell)))
(good-enuf? g x done)
(switch done g answer)
(inverter done not-done)
(switch not-done x x-if-not-done)
(switch not-done g g-if-not-done)
(heron-step x-if-not-done g-if-not-done new-g)
(sqrt-iter x-if-not-done new-g answer)))))

(define (good-enuf? g x done)
(compound-propagator (list g x)
(lambda ()
(let ((g~2 (make-cell))
(eps (make-cell))
(x-g~2 (make-cell))
(ax-g~2 (make-cell)))
((constant .00000001) eps)
(multiplier g g g~2)
(subtractor x g~2 x-g~2)
(absolute-value x-g~2 ax-g~2)
(<? ax-g"2 eps done)))))

With this program we get a rather nice value for the square root of 2
(even though this end test is not a good one from the numerical analyst’s
perspective).

(define x (make-cell))
(define answer (make-cell))

(sqrt-network x answer)

(add-content x 2)
(content answer)
1.4142135623746899

Making this work

So, what does it take to make this basic example work? We need some
cells and some propagators, and the compound-propagator procedure
used above. Let us start with the cell. In this simplest system, each
cell stores a single value (or a distinguished token meaning the absence
of a value) and maintains a set of propagators that need to be alerted if

6

the cell’s content changes.
(define nothing (list ’*the-nothingx))

(define (nothing? thing)
(eq? thing nothing))

(define (make-cell)
(let ((neighbors ’()) (content nothing))
(define (new-neighbor! new-neighbor)
(if (not (memg new-neighbor neighbors))
(begin
(set! neighbors (cons new-neighbor neighbors))
(alert-propagators new-neighbor))))
(define (add-content increment)
(cond ((nothing? increment) ’ok)
((nothing? content)
(set! content increment)
(alert-propagators neighbors))
(else
(if (not (default-equal? content increment))
(error "Ack! Inconsistency!")))))
(define (me message)
(cond ((eq? message ’new-neighbor!) new-neighbor!)
((eq? message ’add-content) add-content)
((eq? message ’content) content)
(else (error "Unknown message" message))))
me))

(define (new-neighbor! cell neighbor)
((cell ’new-neighbor!) neighbor))

(define (add-content cell increment)
((cell ’add-content) increment))

(define (content cell)
(cell ’content))

Each cell stores its content and the set of propagators that have an-
nounced, by invoking the new-neighbor! procedure, that they are inter-
ested in that cell’s content.

In these cells, the designated marker nothing means “I know nothing
about the value that should be here,” and any other value x means “I
know everything about the value that should be here, and it is z.” The
permitted interface for changing a cell’s content is to add more informa-
tion to it by calling the add-content procedure. In this simple system,
only four things can happen: adding nothing to the cell says “I don’t
know anything about what should be here,” so it’s always ok and does

not change the cell’s content at all. Adding a raw value to a cell amounts
to saying “I know that the content of this cell should be exactly x.” This
is fine if the cell knew nothing before, in which case it now knows its
content is x, and alerts anyone who might be interested in that. This is
also fine if the cell already knew its content was? x, in which case the
addition taught it nothing new (and, notably, its neighbors don’t need to
be alerted when this happens). If, however, the cell already knew that
its content was something other than x, then something is amiss. The
only resolution available in this system is to signal an error.

A propagator in this system is just a nullary Scheme procedure that
the scheduler runs from time to time. The only thing we need to do to
bless it as a propagator is to attach it as a neighbor to the cells whose
contents affect it, and schedule it for the first time:

(define (propagator neighbors to-do)
(for-each (lambda (cell)
(new-neighbor! cell to-do))
(listify neighbors))
(alert-propagators to-do))

This procedure arranges for the thunk to-do to be run at least once,
and asks each cell in the neighbors argument to have to-do rerun if that
cell’s content changes.

Most of our primitive propagators just take a normal Scheme function,
wait for the cells containing the arguments to acquire some interesting
values, and then apply that function to those values and write the result
into a cell for the output. The procedure 1ift-to-cell-contents ensures
that if any cell contents are still nothing the result is nothing,

(define (lift-to-cell-contents f)
(lambda args
(if (any nothing? args)
nothing
(apply f args))))

and function->propagator-constructor makes a device that will con-
struct such propagators when desired.

2Equality is a tough subject

(define (function->propagator-constructor f)
(lambda cells
(let ((output (car (last-pair cells)))
(inputs (except-last-pair cells))
(lifted-f (lift-to-cell-contents £f)))
(propagator inputs ; The output isn’t a neighbor!3
(lambda ()
(add-content output
(apply lifted-f (map content inputs))))))))

With this machinery, we can define a nice array of primitive propaga-
tors that just implement Scheme functions:

(define adder (function->propagator-constructor +))
(define subtractor (function->propagator-constructor -))
(define multiplier (function->propagator-constructor *))
(define divider (function->propagator-constructor /))
;35 ... for more primitives see Appendix A

Constants also turn out quite nicely:

(define (constant value)
(function->propagator-constructor (lambda () value)))

To round out our collection of primitive propagators, we implement the
switches we used for recursion as a special case of a two-armed conditional
device,

(define (switch predicate if-true output)
(conditional predicate if-true (make-cell) output))

which itself is a relatively straightforward wrapper around Scheme’s na-
tive if, except that it needs to take some care in the case that the cell
containing the predicate has no content yet.

(define (conditional p if-true if-false output)
(propagator (list p if-true if-false)
(lambda ()
(let ((predicate (content p)))
(if (nothing? predicate)
’done
(add-content output
(if predicate
(content if-true)
(content if-false))))))))

3Because the function’s activities do not depend upon changes in the content of the out-
put cell.

Finally, a compound propagator is implemented with a procedure that
will construct the propagator’s body on demand. We take care that it
is constructed only if some neighbor actually has a value, and that it is
constructed only once:

(define (compound-propagator neighbors to-build)
(let ((done? #f) (neighbors (listify neighbors)))
(define (test)
(if done?
’ok
(if (every nothing? (map content neighbors))
’ok
(begin (set! done? #t)
(to-build)))))
(propagator neighbors test)))

3 Partial Information

One way that the propagation model of computation differs from the
expression-evaluation model is that a single cell can get information from
multiple sources, whereas the return value of an expression can come from
only one source—the expression. This difference can be seen in sqrt-iter
because the answer cell can get a value from two sources. This particular
case is not very interesting because only one of the alternatives is ever
effective. Indeed in an expression language a conditional gives a way of
choosing among exclusive alternatives.

More generally, however, if information can enter a cell from multiple
different sources, it is natural to imagine each source producing some
part of the information in question, and the cell being responsible for
combining those parts. For example, we can imagine a network whose
cells contain subintervals of the real numbers, each interval representing
the set of possible values to which the cell’s content is known to be re-
stricted. The operations in the network perform interval arithmetic. In
this case, if there is some redundancy in the network, a cell can get non-
trivial constraining information from multiple sources; since each source
authoritatively asserts that the cell’s value must be within its limits, the
net effect is that the intervals need to be intersected. [4, 5]

To make this example concrete, consider the famous problem of mea-
suring the height of a building by means of a barometer. A great variety
of solutions are known; let us start with dropping it off the roof and
timing its fall. Then the height h of the building is given by h = 1/2¢t2,
where ¢ is the acceleration due to gravity and ¢ is the amount of time the
barometer took to hit the ground. We implement this as a propagator

10

network (that includes some uncertainty about the local g):

(define (fall-duration t h)
(compound-propagator t
(lambda ()
(let ((g (make-cell))
(one-half (make-cell))
(t"2 (make-cell))
(gt™2 (make-cell)))
((constant (make-interval 9.789 9.832)) g)
((constant (make-interval 1/2 1/2)) one-half)
(squarer t t72)
(multiplier g t°2 gt~2)
(multiplier one-half gt~2 h)))))

Trying it out, we get an estimate for the height of the building:

(define fall-time (make-cell))
(define building-height (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time (make-interval 2.9 3.1))
(content building-height)
#(interval 41.163 47.243)

Of course, we can also measure the height of a building using a barom-
eter by standing the barometer on the ground on a sunny day, measuring
the height of the barometer as well as the length of its shadow, and then
measuring the length of the building’s shadow and using similar triangles.
The formula is h = sh”” where h and s are the height and shadow-length
of the building, respectlvely, and hp, and sp, are the barometer’s. The
network for this is

(define (similar-triangles s-ba h-ba s h)
(compound-propagator (list s-ba h-ba s)
(lambda ()
(let ((ratio (make-cell)))
(divider h-ba s-ba ratio)
(multiplier s ratio h)))))

and we can try it out:

11

(define barometer-height (make-cell))

(define barometer-shadow (make-cell))

(define building-height (make-cell))

(define building-shadow (make-cell))

(similar-triangles barometer-shadow barometer-height
building-shadow building-height)

(add-content building-shadow (make-interval 54.9 55.1))
(add-content barometer-height (make-interval 0.3 0.32))
(add-content barometer-shadow (make-interval 0.36 0.37))
(content building-height)

#(interval 44.514 48.978)

Different measurements lead to different errors, and the computation
leads to a different estimate of the height of the same building. This gets
interesting when we combine both means of measurement, by measuring
shadows first and then climbing the building and dropping the barometer
off it:

(define fall-time (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time (make-interval 2.9 3.1))
(content building-height)
#(interval 44.514 47.243)

It turns out that in this case the upper bound for the building’s height
comes from the drop measurement, whereas the lower bound comes from
the shadow measurement — we have a nontrivial combination of partial
information from different sources.

Making this work

Let’s see what we need to make this work. First, we need some code
to actually do interval arithmetic.* Nothing fancy here, especially since
we are assuming that all our intervals have positive bounds (and only
implementing multiplication, because the examples don’t add intervals).

(define (mul-interval x y)
(make-interval (* (interval-low x) (interval-low y))
(* (interval-high x) (interval-high y))))

4For the concrete definitions of the data structures we use in this text, see Appendix B.

12

(define (div-interval x y)
(mul-interval x
(make-interval (/ 1.0 (interval-high y))
(/ 1.0 (interval-low y)))))

(define (square-interval x)
(make-interval (square (interval-low x))
(square (interval-high x))))

(define (sqrt-interval x)
(make-interval (sqrt (interval-low x))
(sart (interval-high x))))

(define (empty-interval? x)
(> (interval-low x) (interval-high x)))

(define (intersect-intervals x y)
(make-interval
(max (interval-low x) (interval-low y))
(min (interval-high x) (interval-high y))))

Then we need to make some propagators that expect intervals in input
cells and write intervals to output cells. This is straightforward as well.

(define multiplier (function->propagator-constructor mul-interval))
(define divider (function->propagator-constructor div-interval))
(define squarer (function->propagator-constructor square-interval))
(define sqrter (function->propagator-constructor sqrt-interval))

Finally, we need to alter our cells to accept intervals, and merge them
by intersection rather than checking that they are equal.

13

(define (make-cell)
(let ((neighbors ’()) (content nothing))
(define (new-neighbor! new-neighbor)
(if (not (memq new-neighbor neighbors))
(begin
(set! neighbors (cons new-neighbor neighbors))
(alert-propagators new-neighbor))))
(define (add-content increment)
(cond ((nothing? increment) ’ok)
((nothing? content)
(set! content increment)
(alert-propagators neighbors))
(else 5 okk
(let ((new-range
(intersect-intervals content
increment)))
(cond ((equal? new-range content) ’ok)
((empty-interval? new-range)
(error "Ack! Inconsistency!"))
(else (set! content new-range)
(alert-propagators neighbors)))))))
(define (me message)
(cond ((eq? message ’new-neighbor!) new-neighbor!)
((eq? message ’add-content) add-content)
((eq? message ’content) content)
(else (error "Unknown message" message))))
me))

The only change we need to make is the else clause of the conditional,
marked **. This interesting, interval-specific merge code is what allowed
our example network to accept measurements from diverse sources and
combine them all to produce a final result that was more precise than
the result from any one measurement alone.

4 Multidirectional Computation

So far, the only thing we seem to have gained from putting the merging
of partial information into cells is aesthetic cleanliness. The building
example above can be simulated perfectly well in an expression language.
After all, since the information can only come from two independent
sources, it is easy enough to add an explicit interval-intersection step
between the outputs of each of the individual methods and the output of
both together. This produces a less incremental computation, because it
must wait for both means of measurement to produce answers before it
commits to outputting its own, but perhaps we can live with that.

The real advantage of letting the cells merge information is that it

14

lets us build systems with a much broader range of possible information
flows. What would happen, for instance, if we augmented our arithmetic
to impose a relation, or a constraint [19, 3, 20] if you will, rather than
computing a single “output” from the available “inputs”? To do that,
we just stack appropriate mutual inverses on top of each other:

(define (product x y total)
(multiplier x y total)
(divider total x y)
(divider total y x))

(define (quadratic x x72)
(squarer x x72)
(sqrter x°2 x))

Whichever one has enough inputs will do its computation, and the cells
will take care to not get too excited about redundant discoveries.

Our building measurement methods become multidirectional just by
composing multidirectional primitives.

(define (fall-duration t h)
(compound-propagator (list t h)
(lambda ()
(let ((g (make-cell))
(one-half (make-cell))
(t"2 (make-cell))
(gt~2 (make-cell)))
((constant (make-interval 9.789 9.832)) g)
((constant (make-interval 1/2 1/2)) one-half)
(quadratic t t°2)
(product g t72 gt~2)
(product one-half gt~2 h)))))

(define (similar-triangles s-ba h-ba s h)
(compound-propagator (list s-ba h-ba s h)
(lambda ()
(let ((ratio (make-cell)))
(product s-ba ratio h-ba)
(product s ratio h)))))

Now the estimation of the building’s height works just fine,

15

(define barometer-height (make-cell))

(define barometer-shadow (make-cell))

(define building-height (make-cell))

(define building-shadow (make-cell))

(similar-triangles barometer-shadow barometer-height
building-shadow building-height)

(add-content building-shadow (make-interval 54.9 55.1))
(add-content barometer-height (make-interval 0.3 0.32))
(add-content barometer-shadow (make-interval 0.36 0.37))
(content building-height)

#(interval 44.514 48.978)

as does the refinement of that estimate by adding another measurement.

(define fall-time (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time (make-interval 2.9 3.1))
(content building-height)
#(interval 44.514 47.243)

But something else interesting happens as well. The better information
available about the height of the building propagates backward, and lets
us infer refinements of some of our initial measurements!

(content barometer-height)
#(interval .3 .31839)

(content fall-time)
#(interval 3.0091 3.1)

Indeed, if we offer (yet another) barometer to the building’s superin-
tendent in return for perfect information about the building’s height, we
can use it to refine our understanding of barometers and our experiments
even further:

(add-content building-height (make-interval 45 45))
(content barometer-height)
#(interval .3 .30328)

(content barometer-shadow)
#(interval .366 .37)

(content building-shadow)
#(interval 54.9 55.1)

(content fall-time)
#(interval 3.0255 3.0322)

16

5 Generic Operations

The changes we needed to move from propagating numbers to propa-
gating intervals were minor. We had to change the cell’s behavior on
receiving new information, and we had to redefine the “primitive” arith-
metic. We can make the two kinds of networks interoperate with each
other (and with future kinds we will introduce later) by transforming
those procedures into published generic operations, and allowing them
to be extended as needed.

First cells. The code we had to vary was what to do when new informa-
tion is added to the cell. We can factor that out into a generic function,
merge, whose methods depend upon the kind of partial information being
tendered. The remaining commonality is deciding whether to alert the
neighbors to the change, for which we leave the cell responsible.

(define (make-cell)
(let ((neighbors ’()) (content nothing))
(define (new-neighbor! new-neighbor)
(if (not (memg new-neighbor neighbors))
(begin
(set! neighbors (cons new-neighbor neighbors))
(alert-propagators new-neighbor))))
(define (add-content increment) ; **x*
(let ((answer (merge content increment)))
(cond ((eq? answer content) ’ok)
((contradictory? answer)
(error "Ack! Inconsistency!"))
(else (set! content answer)
(alert-propagators neighbors)))))
(define (me message)
(cond ((eq? message ’new-neighbor!) new-neighbor!)
((eq? message ’add-content) add-content)
((eq? message ’content) content)
(else (error "Unknown message" message))))
me))

The contract of the generic function merge is that it takes two argu-
ments: the currently known information and the new information being
supplied, and returns the new aggregate information. If the new infor-
mation is redundant, the merge function should return exactly (by eq?)
the original information, whereas if the new information contradicts the
old information, merge should return a distinguished value indicating
the contradiction. For symmetry and future use, if the new information
strictly supercedes the old (i.e. if the old information would be redun-
dant given the new, but the new is not redundant given the old) merge
is expected to return exactly (by eq?) the new information.

17

The interface to our generic operation facility consists of the two pro-
cedures make-generic-operator and assign-operation. The procedure
make-generic-operator creates a new generic procedure with the given
arity, name, and default operation. The default operation will be called
if no methods are applicable.

(define merge
(make-generic-operator 2 ’merge
(lambda (content increment)
(if (default-equal? content increment)
content
the-contradiction))))

(define the-contradiction (list ’contradiction))
(define (contradictory? x) (eq? x the-contradiction))

The procedure assign-operation takes the name of a generic proce-
dure, a method, and a list of predicates, and extends the named generic
procedure to invoke the given method if the supplied arguments are all
accepted by the given predicates, in order. This is a predicate dispatch
system [8].

(assign-operation ’merge
(lambda (content increment) content)
any? nothing?)

(assign-operation ’merge
(lambda (content increment) increment)
nothing? any?)

Together with the default operation on merge, these methods replicate
the behavior of our first cell.

To be able to use intervals throughout a network, we need only add a
method that describes how to combine them with each other,

(assign-operation ’merge
(lambda (content increment)
(let ((new-range (intersect-intervals content increment)))
(cond ((interval-equal? new-range content) content)

((interval-equal? new-range increment) increment)
((empty-interval? new-range) the-contradiction)
(else new-range))))

interval? interval?)

but interpreting raw numbers as intervals allows us to interoperate with
them as well.

18

(define (ensure-inside interval number)
(if (<= (interval-low interval) number (interval-high interval))
number
the-contradiction))

(assign-operation ’merge

(lambda (content increment)
(ensure-inside increment content))

number? interval?)

(assign-operation ’merge

(lambda (content increment)
(ensure-inside content increment))

interval? number?)

Second, we can define generic variants of the standard arithmetic op-
erations

(define generic-+ (make-generic-operator 2 ’+ +))
(define generic-- (make-generic-operator 2 ’- -))
(define generic-* (make-generic-operator 2 ’* *))

(define generic-/ (make-generic-operator 2 ’/ /))

(define generic-square (make-generic-operator 1 ’square square))
(define generic-sqrt (make-generic-operator 1 ’sqrt sqrt))

;35 ... for more generic primitives see Appendix C.1

for our propagators to run

(define adder (function->propagator-constructor generic-+))
(define subtractor (function->propagator-constructor generic--))
(define multiplier (function->propagator-constructor generic-x*))
(define divider (function->propagator-constructor generic-/))
(define squarer (function->propagator-constructor generic-square))
(define sqrter (function->propagator-constructor generic-sqrt))
;53 ... the conditional propagator is subtle, see Appendix C.5

and attach interval arithmetic methods to them®

(assign-operation ’* mul-interval interval? interval?)
(assign-operation ’/ div-interval interval? interval?)
(assign-operation ’square square-interval interval?)
(assign-operation ’sqrt sqrt-interval interval?)

IR

Now our interval arithmetic still works

5Besides methods implementing interval arithmetic, we also need methods that will
promote numbers to intervals when needed. The details are in Appendix C.2.

19

(define fall-time (make-cell))
(define building-height (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time (make-interval 2.9 3.1))
(content building-height)
#(interval 41.163 47.243)

and interoperates with raw numbers appearing in the network.
(add-content building-height 45)

(content fall-time)
#(interval 3.0255 3.0322)

6 Dependencies

Now that we have established a general mechanism for computing with
various forms of partial information, we are ready to consider a particu-
larly consequential form.

All humans harbor mutually inconsistent beliefs: an intelligent person
may be committed to the scientific method yet have a strong attach-
ment to some superstitious or ritual practices. A person may have a
strong belief in the sanctity of all human life, yet also believe that cap-
ital punishment is sometimes justified. If we were really logicians this
kind of inconsistency would be fatal, because were we to simultaneously
believe both propositions P and NOT P then we would have to believe
all propositions! Somehow we manage to keep inconsistent beliefs from
inhibiting all useful thought. Our personal belief systems appear to be
locally consistent, in that there are no contradictions apparent. If we
observe inconsistencies we do not crash—we chuckle!

Dependency decorations on data that record the justifications for the
data give us a powerful tool for organizing computations. Every piece of
data (or procedure) came from somewhere. Either it entered the com-
putation as a premise that can be labeled with its external provenance,
or it was created by combining other data. We can add methods to our
primitive operations which, when processing or combining data that is
decorated with justifications, can decorate the results with appropriate
justifications. The justifications can be at differing levels of detail. For
example, the simplest kind of justification is just a set of those premises
that contributed to the new data. A procedure such as addition can dec-
orate a sum with a justification that is just the union of the premises of
the justifications of the addends that were supplied. Multiplication can
be more complicated: if a multiplicand is zero, that is sufficient to force

20

the product to be zero, so the justifications of the other operands are not
required to be included in the justification of the product. Such simple
justifications can be carried without more than a constant factor over-
head in space, but they can be invaluable in debugging complex processes
and in the attribution of credit or blame for outcomes of computations.

We can choose to keep more than just the set of supports of data by
providing an elaboration such that with each datum we keep the way it
was derived. This is good for providing explanations but it is intrinsically
a bit more expensive. Although such an audit trail may be costlier, it
can facilitate the debugging of complex processes.

By decorating data with dependencies a system can manage and use-
fully compute with multiple, possibly inconsistent world views. A world
view is a subset of the data that is supported by a given set of ex-
plicit assumptions. Each computational process may restrict itself to
working with some consistent world view. A Truth Maintenance Sys-
tem, [7, 15, 11], is a mechanism for implementing world views.

If a contradiction is discovered, a process can determine the par-
ticular “nogood set” of inconsistent premises. The system can then
“chuckle”, realizing that no computations supported by any superset
of those premises can be believed. This chuckling process, Dependency-
Directed Backtracking, [18, 14, 21], can be used to optimize a complex
search process, allowing a search to make the best use of its mistakes.
But enabling a process to simultaneously hold beliefs based on mutually
inconsistent sets of premises, without logical disaster, is itself revolution-
ary.

6.1 Dependencies for Provenance

We now illustrate these ideas, and the manner in which they fit into
the propagator network framework, by building a sequence of sample
dependency tracking systems of increasing complexity. We start with a
relatively simple system that only tracks and reports the provenance of
its data.

How do we want our provenance system to work? We can make cells
and define networks as usual, but if we add supported values as inputs,
we get supported values as outputs:

21

(define barometer-height (make-cell))

(define barometer-shadow (make-cell))

(define building-height (make-cell))

(define building-shadow (make-cell))

(similar-triangles barometer-shadow barometer-height
building-shadow building-height)

(add-content building-shadow

(supported (make-interval 54.9 55.1) ’(shadows)))
(add-content barometer-height

(supported (make-interval 0.3 0.32) ’(shadows)))
(add-content barometer-shadow

(supported (make-interval 0.36 0.37) ’(shadows)))
(content building-height)
(supported # (interval 44.514 48.978) (shadows))

Indeed, our estimate for the height of the building depends on our mea-
surements of the barometer and the shadow. We can try dropping the
barometer off the roof, but if we do a bad job of timing its fall, our
estimate won’t improve.

(define fall-time (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time

(supported (make-interval 2.9 3.3) ’(lousy-fall-time)))
(content building-height)
(supported #(interval 44.514 48.978) (shadows))

What’s more, the dependency tracker tells us that it was a lousy timing
job, because the resulting answer doesn’t actually depend on the fall
timing measurement. If we do it better, then we can get a finer estimate,
which then will depend on the improved fall timing measurement.

(add-content fall-time
(supported (make-interval 2.9 3.1) ’(better-fall-time)))
(content building-height)
(supported #(interval 44.514 47.243)
(better-fall-time shadows))

If we then give a barometer to the superintendent, we can watch the
superintendent’s information supercede and obsolesce the results of our
measurements

(add-content building-height (supported 45 ’(superintendent)))

(content building-height)
(supported 45 (superintendent))

22

and see which of the measurements themselves we can infer more about
based on the now known height of the building.

(content barometer-height)
(supported #(interval .3 .30328)
(superintendent better-fall-time shadows))

(content barometer-shadow)
(supported # (interval .366 .37)
(better-fall-time superintendent shadows))

(content building-shadow)
(supported #(interval 54.9 55.1) (shadows))

(content fall-time)
(supported #(interval 3.0255 3.0322)
(shadows superintendent))

Here values in cells can depend upon sets of premises. In this example
each cell is allowed to hold one value, and the merge procedure combines
the possible values for a cell into one most-informative value that can be
derived from the values tendered. This value is supported by the union
of the supports of those values that contributed to the most informative
value. The value is accumulated by combining the current value (and
justifications) with the new value being proposed, one at at time.

This particular approach to accumulating supports is imperfect, and
can produce spurious dependencies. We can illustrate this with interval
arithmetic by imagining three values A, B, C' being proposed in order.
A possible computation is shown in Figure 2. We see that premise A

A []

B []
A,B: []

C: []

A,B,C: [1]

Figure 2: The overlap anomaly

is included in the justifications for the result, even though it is actually
irrelevant, because it is superseded by the value supported by C. This
case actually occurs in the code example above. We will ameliorate this
anomaly this later.

23

Making this work

What do we need to do to make this dependency tracking work? We
define a data structure we name a v&s to store a value together with the
dependecies that support it, see Appendix B.

(define (v&s-merge v&sl v&s2)
(let* ((v&sl-value (v&s-value v&sl))
(v&s2-value (v&s-value v&s2))
(value-merge (merge v&sl-value v&s2-value)))
(cond ((eq? value-merge v&sl-value)
(if (implies? v&s2-value value-merge)
;3 Confirmation of existing information
(if (more-informative-support? v&s2 v&sl)
v&s2
v&s1)
;; New information is not interesting
v&sl))
((eq? value-merge v&s2-value)
;; New information overrides old information
v&s2)
(else
;; Interesting merge, need both provenances
(supported value-merge
(merge-supports v&sl v&s2))))))

(assign-operation ’merge v&s-merge v&s? v&s7)

(define (implies? vl v2)
(eq? v1 (merge vl v2)))

Figure 3: Merging supported values

The important thing is to describe how to merge the information con-
tained in two such data structures; see Figure 3. The value contained
in the answer must of course be the merge of the values contained in
the two inputs, but sometimes we may get away with using only some of
the supporting premises. There are three cases: if neither the new nor
the old values are redundant, then we need both their supports; if ei-
ther is strictly redundant, we needn’t include its support; and if they are
equivalent, we can choose which support to use. In this case, we use the
support of the value already present unless the support of the new one
is strictly more informative (i.e. is a strict subset of the same premises).

If it so happens that two supported values contradict each other, we
want to return an object that will be recognized as representing a con-
tradiction, but will retain the information about which premises were
involved in the contradiction. It is convenient to do that by turning the

24

cell’s contradiction test into a generic operation; that way we can let
v&s-merge return a supported value whose value is a contradiction, and
give ourselves the ability to extend the notion of contradiction later.

(define contradictory?
(make-generic-operator 1 ’contradictory?
(lambda (thing) (eq? thing the-contradiction))))

(assign-operation ’contradictory?
(lambda (v&s) (contradictory? (v&s-value v&s)))
v&s?)

Finally, we need to upgrade our arithmetic primitives to carry de-
pendencies around, and to interoperate with data they find that lacks
justifications by inserting empty dependency sets; see Appendix C.3.

6.2 Dependencies for Alternate Worldviews

The anomaly shown above was a consequence of the loss of information
about the derivation of a value due to its sequential accumulation. We
can begin to generalize this by allowing a cell to hold more than one
value at a time, each justified by its own justification. When queried, a
cell can do whatever deduction is required to give the most informative
answer it can, justified by the weakest sufficient set of premises. Allow-
ing multiple values provides further advantages. It becomes possible to
efficiently support multiple alternate worldviews: a query to a cell may
be restricted to return only values that are supported by a subset of the
set of possible premises. Such a subset is called a worldview. A truth
maintenance system (TMS) can be used to store multiple values with
different justifications for this purpose. If we put TMSes in our cells, we
can revisit the building-height problem:

25

(define barometer-height (make-cell))

(define barometer-shadow (make-cell))

(define building-height (make-cell))

(define building-shadow (make-cell))

(similar-triangles barometer-shadow barometer-height
building-shadow building-height)

(add-content building-shadow

(make-tms (supported (make-interval 54.9 55.1) ’(shadows))))
(add-content barometer-height

(make-tms (supported (make-interval 0.3 0.32) ’(shadows))))
(add-content barometer-shadow

(make-tms (supported (make-interval 0.36 0.37) ’(shadows))))
(content building-height)
#(tms (# (supported #(interval 44.514 48.978) (shadows))))

Nothing much changes while there is only one source of information,

(define fall-time (make-cell))
(fall-duration fall-time building-height)

(add-content fall-time
(make-tms (supported (make-interval 2.9 3.1) ’(fall-time))))
(content building-height)
#(tms (# (supported #(interval 44.514 47.243)
(shadows fall-time))
(supported #(interval 44.514 48.978)
(shadows))))

but when we add the second experiment, the TMS remembers the de-
ductions made in the first. In this particular system, we chose to make
the worldview implicit and global, and to have it include all premises
by default. That works fine on a uniprocessor, but a more distributed
propagator network might be better served by a more local notion of
worldview, and by propagating changes thereto explicitly rather than
letting them instantly affect the entire network.

With an implicit global worldview, querying a TMS requires no ad-
ditional input and produces the most informative value supported by
premises in the current worldview:

(tms-query (content building-height))
(supported # (interval 44.514 47.243) (shadows fall-time))

We also provide a means to remove premises from the current world-
view, which in this case causes the TMS query to fall back to the less-
informative inference that can be made using only the shadows experi-
ment:

26

(kick-out! ’fall-time)
(tms-query (content building-height))
(supported #(interval 44.514 48.978) (shadows))

Likewise, we can ask the system for the best answer it can give if we trust
the fall-time experiment but not the shadows experiment,

(bring-in! ’fall-time)

(kick-out! ’shadows)

(tms-query (content building-height))

(supported #(interval 41.163 47.243) (fall-time))

which may involve some additional computation not needed heretofore,
whose results are reflected in the full TMS we can observe at the end.

(content building-height)
#(tms (# (supported #(interval 41.163 47.243)
(fall-time))
(supported #(interval 44.514 47.243)
(shadows fall-time))
(supported #(interval 44.514 48.978)
(shadows))))

Now, if we give the superintendent a barometer, we can add her input to
the totality of our knowledge about this building

(add-content building-height (supported 45 ’(superintendent)))

and observe that it is stored faithfully along with all the rest,

(content building-height)
#(tms (#(supported 45 (superintendent))
(supported #(interval 41.163 47.243)
(fall-time))
(supported #(interval 44.514 47.243)
(shadows fall-time))
(supported #(interval 44.514 48.978)
(shadows))))

though indeed if we trust it, it provides the best estimate we have.

(tms-query (content building-height))
(supported 45 (superintendent))

(and restoring our faith in the shadows experiment has no effect on the
accuracy of this answer).

27

(bring-in! ’shadows)
(tms-query (content building-height))
(supported 45 (superintendent))

If we now turn our attention to the height of the barometers we have
been dropping and giving away, we notice that as before, in addition to
the originally supplied measurements, the system has made a variety of
deductions about it, based on reasoning backwards from our estimates
of the height of the building and the other measurements in the shadows
experiment.

(content barometer-height)
#(tms (# (supported #(interval .3 .30328)
(fall-time superintendent shadows))
(supported #(interval .29401 .30328)
(superintendent shadows))
#(supported #(interval .3 .31839)
(fall-time shadows))
(supported #(interval .3 .32) (shadows))))

If we should ask for the best estimate of the height of the barometer,
we observe the same problem we noticed in the previous section, namely
that the system produces a spurious dependency on the fall-time exper-
iment, whose findings are actually redundant for answering this question.

(tms-query (content barometer-height))
(supported #(interval .3 .30328)
(fall-time superintendent shadows))

We can verify the irrelevance of the fall-time measurements by disbe-
lieving them and observing that the answer remains the same, but with
more accurate dependencies.

(kick-out! ’fall-time)
(tms-query (content barometer-height))
(supported #(interval .3 .30328) (superintendent shadows))

What is more, having been asked to make that deduction, the truth main-
tenance system remembers it, and produces the better answer thereafter,
even if we subsequently restore our faith in the fall-time experiment,

(bring-in! ’fall-time)

(tms-query (content barometer-height))
(supported #(interval .3 .30328) (superintendent shadows))

28

and takes the opportunity to dispose of prior deductions that are obso-
leted by this new realization.

(content barometer-height)
#(tms (# (supported #(interval .3 .30328)
(superintendent shadows))
(supported #(interval .3 .31839)
(fall-time shadows))
(supported #(interval .3 .32) (shadows))))

We have been fortunate so far in having all our measurements agree with
each other, so that all worldviews we could possibly hold were, in fact,
internally consistent. But what if we had mutually contradictory data?
What if, for instance, we happened to observe the barometer’s readings,
both while measuring its shadow on the ground and before dropping it off
the roof of the building? We might then consult some pressure-altitude
tables, or possibly even an appropriate formula relating altitude and pres-
sure, and, being blessed with operating on a calm, windless day, deduce,
by computations whose actual implementation as a propagator network
would consume more space than it would produce enlightenment, yet
another interval within which the building’s height must necessarily lie.
Should this new information contradict our previous store of knowledge,
we would like to know; and since the system maintains dependency in-
formation, it can even tell us which premises lead to trouble.

(add-content building-height
(supported (make-interval 46. 50.) ’(pressure)))
(contradiction (superintendent pressure))

Indeed, if we ask after the height of the building under this regime of
contradictory information, we will be informed of the absence of a good
answer,

(tms-query (content building-height))
(supported (contradiction) (superintendent pressure))

but it is appropriate for the system not to propagate consequences de-
ducible in an inconsistent worldview.

(tms-query (content barometer-height))
(supported #(interval .3 .30328) (superintendent shadows))

It is up to us as the users of the system to choose which worldview to
explore. We can ascertain the consequences of disregarding the super-
intendent’s assertions, both on our understanding of the height of the
building

29

(kick-out! ’superintendent)
(tms-query (content building-height))
(supported #(interval 46. 47.243) (fall-time pressure))

and on that of the barometer.

(tms-query (content barometer-height))
(supported #(interval .30054 .31839)
(pressure fall-time shadows))

Doing so does not cost us previously learned data, so we are free to change
worldviews at will, reasoning as we like in one consistent worldview or
another.

(bring-in! ’superintendent)

(kick-out! ’pressure)

(tms-query (content building-height))

(supported 45 (superintendent))

(tms-query (content barometer-height))

(supported #(interval .3 .30328) (superintendent shadows))

Making this work

The first component of making this work is to define a suitable TMS
to put into cells. In Appendix B we define a tms record structure that
contains a list of v&s records.

A TMS is a set of v&ss. These v&ss represent the direct deductions
the surrounding system has added to the TMS, and any consequences
thereof the TMS has deduced on its own. Asking the TMS to deduce all
the consequences of all its facts all the time is perhaps a bad idea, so when
we merge TMSes we assimilate the facts from the incoming one into the
current one, and then only deduce those consequences that are relevant to
the current worldview. If this deduction reveals a contradiction, we need
to signal that to prevent the system from pursuing further computations
in a worldview that is known to be inconsistent.

(define (tms-merge tmsl tms2)
(let ((candidate (tms-assimilate tmsl tms2)))
(let ((consequence (strongest-consequence candidate)))
(check-consistent! consequence)
(tms-assimilate candidate consequence))))

(assign-operation ’merge tms-merge tms? tms?)

The procedure tms-assimilate incorporates all the given items, one
by one, into the given TMS with no deduction of consequences.

30

(define (tms-assimilate tms stuff)
(cond ((nothing? stuff) tms)
((v&s? stuff) (tms-assimilate-one tms stuff))
((tms? stuff)
(fold-left tms-assimilate-one
tms
(tms-values stuff)))
(else (error "This should never happen"))))

When we add a new v&s to an existing TMS we check whether the
information contained in the new vé&s is deducible from that in one al-
ready in the TMS. If so, we can just throw the new one away. Conversely,
if the information in any existing v&s is deducible from the information
in the new one, we can throw those existing ones away. The predicate
subsumes? returns true only if the information contained in the second
argument is deducible from that contained in the first.

(define (subsumes? v&sl v&s2)
(and (implies? (v&s-value v&sl) (v&s-value v&s2))
(1set<= eq? (v&s-support v&sl) (v&s-support v&s2))))

(define (tms-assimilate-one tms v&s)
(if (any (lambda (old-v&s) (subsumes? old-v&s v&s))
(tms-values tms))
tms
(let ((subsumed
(filter (lambda (old-v&s) (subsumes? v&s old-v&s))
(tms-values tms))))
(make-tms
(1set-adjoin eq?
(1set-difference eq? (tms-values tms) subsumed)

v&s)))))

The procedure strongest-consequence finds the most informative con-
sequence of the current worldview. It does this by using merge to combine
all of the currently believed facts in the tms.

(define (strongest-consequence tms)
(let ((relevant-v&ss
(filter all-premises-in? (tms-values tms))))
(fold-left merge nothing relevant-v&ss)))

(define (all-premises-in? thing)
(if (v&s? thing)
(all-premises-in? (v&s-support thing))

(every premise-in? thing)))

Finally, check-consistent! looks for a contradictory conclusion and

31

extracts the nogood set of premises that support it for later processing.

(define (check-consistent! v&s)
(if (contradictory? v&s)
(process-nogood! (v&s-support v&s))))

To interpret a given TMS in the current worldview is not quite as
simple as just calling strongest-consequence, because if the consequence
has not been deduced previously, which can happen if the worldview
changed after the last time tms-merge was called, the consequence should
be fed back into the TMS and checked for consistency.

(define (tms-query tms)
(let ((answer (strongest-consequence tms)))
(let ((better-tms (tms-assimilate tms answer)))
(if (not (eq? tms better-tms))
(set-tms-values! tms (tms-values better-tms)))
(check-consistent! answer)
answer)))

To support the implicit global worldview, we need a mechanism to
distinguish premises that are believed in the current worldview from
premises that are not. Premises may be marked with “sticky notes”;
Appendix B shows how this is arranged.

Manually changing these sticky notes violates the network’s mono-
tonicity assumptions, so all propagators whose inputs might change under
them need to be alerted when this happens. Altering all the propagators
indiscriminately is a conservative approximation that works reasonably
for a single process simulation.

(define (kick-out! premise)
(if (premise-in? premise) (alert-all-propagators!))
(mark-premise-out! premise))

(define (bring-in! premise)
(if (not (premise-in? premise)) (alert-all-propagators!))
(mark-premise-in! premise))

In order to let cells containing TMSes interoperate with cells contain-
ing other kinds of partial information that can be viewed as TMSes,
we sprinkle on some boring, repetitive coercions and we augment our
generic arithmetic operations to unpack TMSes and coerce things to en-
sure the same level of unpacking. The interested reader can find both in
Appendix C.4.

The process-nogood! procedure just aborts the process, giving the
user a chance to adjust the worldview to avoid the contradiction.

32

(define (process-nogood! nogood)
(abort-process ‘(contradiction ,nogood)))

This will be expanded next.

6.3 Dependencies for Implicit Search

Implicit generate and test can be viewed as a way of making systems
that are modular and independently evolvable. Consider a very simple
example: suppose we have to solve a quadratic equation. There are two
roots to a quadratic. We could return both, and assume that the user
of the solution knows how to deal with that, or we could return one
and hope for the best. (The canonical sqrt routine returns the positive
square root, even though there are two square roots!) The disadvantage
of returning both solutions is that the receiver of that result must know
to try his computation with both and either reject one, for good reason,
or return both results of his computation, which may itself have made
some choices. The disadvantage of returning only one solution is that it
may not be the right one for the receiver’s purpose.

A Dbetter way to handle this is to build a backtracking mechanism into
the infrastructure.[10, 13, 16, 2, 17] The square-root procedure should
return one of the roots, with the option to change its mind and return
the other one if the first choice is determined to be inappropriate by the
receiver. It is, and should be, the receiver’s responsibility to determine
if the ingredients to its computation are appropriate and acceptable.
This may itself require a complex computation, involving choices whose
consequences may not be apparent without further computation, so the
process is recursive. Of course, this gets us into potentially deadly expo-
nential searches through all possible assignments to all the choices that
have been made in the program. As usual, modular flexibility can be
dangerous.

We can reap the benefit of this modular flexibility by burying search
into the already-implicit control flow of the propagator network. Tracing
dependencies helps even more because it enables a smarter search. When
the network is exploring a search space and reaches a dead end, it can
determine which of the choices it made actually contributed to the dead
end, so that it can reverse one of those decisions, instead of an irrelevant
one, and so that it can learn from the mistake and avoid repeating it in
the future.

We illustrate this idea with some information about the building’s
occupants we have gleaned, with due apologies to Dinesman [6], from the
chatty superintendent while we were discussing barometric transactions:

33

Baker, Cooper, Fletcher, Miller, and Smith live on the first
five floors of this apartment house. Baker does not live on the
fifth floor. Cooper does not live on the first floor. Fletcher
does not live on either the fifth or the first floor. Miller lives
on a higher floor than does Cooper. Smith does not live on a
floor adjacent to Fletcher’s. Fletcher does not live on a floor
adjacent to Cooper’s.

Should we wish to determine from this where everyone lives, we are
faced with a search problem. This search problem has the interesting
character that the constraints on the search space are fairly local; the
failure of any particular configuration is attributable to the violation of
a unary or binary constraint. This means that even though the entire
space has size 5° = 3125, studying the cause of any one failure can let
one eliminate 5%- or 53-sized chunks of the space at each dead end. Using
a system that tracks these dependencies automatically can relieve us of
having to embed that knowledge into the explicit structure of the search
program we write.

The extension we need make to the system we already have is to add
a propagator that makes guesses and manufactures new premises to sup-
port them, and modify the contradiction detection machinery to inform
the guessers of their mistakes and give them the opportunity to change
their minds.

To make the example concrete, Figure 4 shows a direct encoding of
the problem statement above as a propagator network.%

Observe the generators one-of, which guess floors where people live
but reserve the right to change their minds later, and testers require
and abhor that point out situations that necessitate changing of minds.

We can run this in our augmented system to find the right answer,

5This ugly program is written in the moral equivalent of assembly language. Even
a relatively straightforward expression-oriented frontend could let us write something
far more pleasant:

(define (multiple-dwelling)

(let ((baker (one-of 1 2 3 4 5)) (cooper (one-of 1 2
(fletcher (one-of 1 2 3 4 5)) (miller (one-of 1 2
(smith (one-of 1 2 3 4 5)))

(require-distinct

(list baker cooper fletcher miller smith))
(abhor (= baker 5)) (abhor (= cooper 1))
(abhor (= fletcher 5)) (abhor (= fletcher 1))
(require (> miller cooper))
(abhor (= 1 (abs (- smith fletcher))))
(abhor (= 1 (abs (- fletcher cooper))))
(1list baker cooper fletcher miller smith)))

3
3

34

(define (multiple-dwelling)

(let ((baker (make-cell)) (cooper (make-cell))
(fletcher (make-cell)) (miller (make-cell))
(smith (make-cell)) (floors ’(1 2 3 4 5)))

(one-of floors baker) (one-of floors cooper)
(one-of floors fletcher) (one-of floors miller)
(one-of floors smith)
(require-distinct
(list baker cooper fletcher miller smith))
(let ((b=5 (make-cell)) (c=1 (make-cell))
(f=5 (make-cell)) (f=1 (make-cell))
(m>c (make-cell)) (sf (make-cell))
(fc (make-cell)) (one (make-cell))
(five (make-cell)) (s-f (make-cell))

(as-f (make-cell)) (f-c (make-cell))
(af-c (make-cell)))

((constant 1) one) ((constant 5) five)

(=7 five baker b=5) (abhor b=5)

(=7 one cooper c=1) (abhor c=1)

(=7 five fletcher f=5) (abhor f=5)

(=7 one fletcher f=1) (abhor f=1)

(>? miller cooper m>c) (require m>c)

(subtractor smith fletcher s-f)
(absolute-value s-f as-f)

(=7 one as-f sf) (abhor sf)
(subtractor fletcher cooper f-c)
(absolute-value f-c af-c)

(=7 one af-c fc) (abhor fc)

(list baker cooper fletcher miller smith))))

Figure 4: The superintendent’s puzzle

(define answers (multiple-dwelling))
(map v&s-value (map tms-query (map content answers)))
(32 45 1)

and observe how few dead ends the network needed to consider before
finding it.

number-of-calls-to-failx
63

In contrast, a naive depth-first search would examine 582 configurations
before finding the answer. Although clever reformulations of the program
that defines the problem can reduce the search substantially, they defeat
much of the purpose of making the search implicit.

35

Making this work
We start by adding a mechanism for making guesses in Figure 5. This

(define (binary-amb cell)
(let ((true-premise (make-hypothetical))
(false-premise (make-hypothetical)))
(define (amb-choose)
(let ((reasons-against-true
(filter all-premises-in?
(premise-nogoods true-premise)))
(reasons-against-false
(filter all-premises-in?
(premise-nogoods false-premise))))
(cond ((null? reasons-against-true)
(kick-out! false-premise)
(bring-in! true-premise))
((null? reasons-against-false)
(kick-out! true-premise)
(bring-in! false-premise))
(else ; this amb must fail.
(kick-out! true-premise)
(kick-out! false-premise)
(process-contradictions
(pairwise-union reasons-against-true
reasons-against-false))))))
((constant (make-tms
(1ist (supported #t (list true-premise))
(supported #f (list false-premise)))))
cell)
;3 The cell is a spiritual neighbor...
(propagator cell amb-choose)))

Figure 5: A guessing machine

works by manufacturing two new premises, and adding to its cell the
guess #t supported by one premise and the guess #f supported by the
other. It also creates a propagator that will ensure that any stable world-
view always believes exactly one of these premises. This propagator is
awakened every time the worldview changes.

Premises accumulate reasons why they should not be believed (data
structure details in Appendix B). Such a reason is a set of premises
which forms a nogood if this premise is added to it. If all the premises in
any such set are currently believed, that consitutes a valid reason not to
believe this premise. If neither of a guesser’s premises can be believed,
the guesser can perform a resolution step to deduce a nogood that does
not involve either of its premises.

36

The pairwise-union procedure is a utility that takes two lists of sets
(of premises) and produces a list of all the unions (eliminating eq?-
duplicates) of all pairs of sets from the two input lists. This constitutes
a resolution of the nogoods represented by the reasons-against-true
with those represented by the reasons-against-false.

When multiple contradictions are discovered at once, we choose to act
upon just one of them, on the logic that the others will be rediscovered if
they are significant. We choose one with the fewest hypothetical premises
because it produces the greatest constraint on the search space.

(define (process-contradictions nogoods)
(process-one-contradiction
(car (sort-by nogoods
(lambda (nogood)
(length (filter hypothetical? nogood)))))))

If a contradiction contains no hypotheticals, there is nothing more to
be done automatically; we abort the process, giving the user a chance to
adjust the worldview manually. If there are hypotheticals, however, we
avoid the contradiction by arbitrarily disbelieving the first hypothetical
that participates in it. We also tell all the participating premises about
the new nogood so that it can be avoided in the future.

(define (process-one-contradiction nogood)
(let ((hyps (filter hypothetical? nogood)))
(if (null? hyps)

(abort-process ‘(contradiction ,nogood))

(begin
(kick-out! (car hyps))
(for-each (lambda (premise)

(assimilate-nogood! premise nogood))
nogood)))))

Teaching a premise about a nogood has two bits. The first is to remove
the premise from the nogood to create the premise-nogood we need to
store. The second is to add it to the list of premise-nogoods already asso-
ciated with this premise, taking care to eliminate any subsumed premise-
nogoods (supersets of other premise-nogoods).

37

(define (assimilate-nogood! premise new-nogood)
(let ((item (delq premise new-nogood))
(set (premise-nogoods premise)))
(if (any (lambda (old) (lset<= eq? old item)) set)
#£
(let ((subsumed
(filter (lambda (old) (1lset<= eq? item o0ld))
set)))
(set-premise-nogoods! premise
(1set-adjoin eq?
(1set-difference eq? set subsumed) item))))))

Finally, we have the machinery to let a contradiction discovered in
the network (by check-consistent!, see page 32) trigger an automatic
change in the worldview.

(define (process-nogood! nogood)
(set! *number-of-calls-to-failsx
(+ *number-of-calls-to-fail* 1))
(process-one-contradiction nogood))

Just for fun, we count the number of times the network hits a contradic-
tion.

The emergent behavior of a bunch of binary-amb propagators em-
bedded in a network is that of a distributed incremental implicit-SAT
solver based on propositional resolution. This particular SAT solver is
deliberately as simple as we could make it; a “production” system could
incorporate modern SAT-solving techniques (e.g. [1]) from the abundant
literature. The network naturally integrates SAT-solving with discover-
ing additional clauses by arbitrary other computation. From the point of
view of the SAT solver, the SAT problem is implicit (in the computation
done by the network). From the point of view of the computation, the
search done by the SAT solver is implicit.

Ambiguity Utilities

A few “assembly macros” are still needed to make our example program
even remotely readable. Since the cells already detect contradictions,
require and abhor turn out to be very elegant:

(define (require cell)
((constant #t) cell))

(define (abhor cell)
((constant #f) cell))

38

The require-distinct procedure just abhors the equality of any two of
the supplied cells.

(define (require-distinct cells)
(for-each-distinct-pair
(lambda (cl c2)
(let ((p (make-cell))) (=7 cl c2 p) (abhor p)))
cells))

Upgrading a binary choice to an n-ary choice can be a simple matter of
constructing a linear chain of binary choices controlling conditionals.

(define (one-of values output-cell)
(let ((cells
(map (lambda (value)
(let ((cell (make-cell)))
((constant value) cell)
cell))
values)))
(one-of-the-cells cells output-cell)))

(define (one-of-the-cells input-cells output-cell)
(cond ((= (length input-cells) 2)
(let ((p (make-cell)))
(conditional p
(car input-cells) (cadr input-cells)
output-cell)
(binary-amb p)))
((> (length input-cells) 2)

(let ((link (make-cell)) (p (make-cell)))
(one-of-the-cells (cdr input-cells) link)
(conditional
p (car input-cells) link output-cell)
(binary-amb p)))

(else

(error "Inadequate choices for one-of-the-cells"

input-cells output-cell))))

7 There is More to Do

The networks described so far resemble applicative order lambda calcu-
lus, in that all the propagators compute all the deductions they can as
soon as possible (except for limitations due to the worldview introduced
in Section 6.2): the propagators “push” data through the network. It is
natural to ask about the meaning of normal order in this context: can
propagators “pull” only the data they need? A novel problem arises: in
contrast with an expression-oriented language, information can enter a

39

cell from multiple sources, and there is no clear way to know in advance
which source(s) are right to pull from. Even worse, since sources are free
to produce partial information and refine it later, there is no clear way to
know when to stop pulling (the only non-refinable information is a con-
tradiction, which hopefully one does not see often). On the bright side,
a novel opportunity arises as well: since the partialness of information is
acknowledged by the architecture, one can choose to pull on only some
portion of the information space. For example, one might be interested
only in answers that don’t require supposing some particular premise; in
this case, computations of values whose supports do contain that premise
can be avoided. Perhaps one can represent “pulls” as explicit requests,
indicating interest in information, and perhaps restrictions on the infor-
mation of interest, which can also be propagated as their own kind of
information.

The networks in our examples propagate partial information about
only “atomic” values — numbers and booleans. The dependency tracking
will work as written” over compound objects like pairs and vectors, but it
can be far better to maintain separate justifications for the first and last
component of a given pair (and for believing that it is a pair), because
those individual justifications may be much smaller than the complete
justification of the whole. In fact, maintaining separate justifications for
the upper and lower bounds of an interval would have eliminated the
anomaly of Figure 2.

We come, at the end, to the eternal problem of time. The struc-
ture of a propagator network is space. To the extent that there is no
“spooky” action at a distance, there is no reason to require time to pass
uniformly and synchronously in all regions of the network. A concurrent
implementation of a propagator network could make this observation
a reality; the only things that would need to be synchronized are the
individual cells, and the neighbor sets of individual propagators. This
observation also lends insight into why the implicit global worldview of
Sections 6.2 and 6.3 entailed such kludgery: changes of the worldview
“travel” instantly throughout the entire network without any respect for
the network’s structure.

"Well, with some more methods on some generic procedures

40

A Primitives for Section 2

(define adder (function->propagator-constructor +))

(define subtractor (function->propagator-constructor -))

(define multiplier (function->propagator-constructor *))

(define divider (function->propagator-constructor /))

(define absolute-value (function->propagator-constructor abs))
(define squarer (function->propagator-constructor square))
(define sqrter (function->propagator-constructor sqrt))

(define =7 (function->propagator-constructor =))

(define <7 (function->propagator-constructor <))

(define >? (function->propagator-constructor >))

(define <=7 (function->propagator-constructor <=))

(define >=7 (function->propagator-constructor >=))

(define inverter (function->propagator-constructor not))

(define conjoiner (function->propagator-constructor boolean/and))
(define disjoiner (function->propagator-constructor boolean/or))

B Data Structure Definitions

Our data structures are simple tagged vectors. Mercifully, we do not
use vectors elsewhere in the system, so no confusion is possible. Also
mercifully, the define-structure macro from MIT Scheme [9] automates
the construction and abstraction of such data structures.

Intervals:

(define-structure

(interval

(type vector) (named ’interval) (print-procedure #f))
low high)

(define interval-equal? equal?)
Supported values:
(define-structure
(v&s (named ’supported) (type vector)
(constructor supported) (print-procedure #f))
value support)
(define (more-informative-support? v&sl v&s2)
(and (not (1lset= eq? (v&s-support v&sl) (v&s-support v&s2)))
(1set<= eq? (v&s-support v&sl) (v&s-support v&s2))))

(define (merge-supports . vé&ss)
(apply lset-union eq? (map v&s-support v&ss)))

41

Lists of supported values for truth maintenance:

(define-structure
(tms (type vector) (named ’tms)
(constructor %make-tms) (print-procedure #f))
values)

(define (make-tms arg)
(Ymake-tms (listify arg)))

Synthetic premises for hypothetical reasoning

(define-structure
(hypothetical (type vector) (named ’hypothetical) (print-procedure #f)))

turn out to need only their identity (and the hypothetical? type testing
predicate).

To support the implicit global worldview, we put sticky notes on our
premises indicating whether or not we believe them. A “sticky note” is
the presence or absence of the premise in question in a global eq-hash
table. This mechanism is nice because we can use arbitrary objects as
premises, without having to make any arrangements for this in advance.
Since the table holds its keys weakly, this does not interfere with garbage
collection.

(define *premise-outness* (make-eq-hash-table))

(define (premise-in? premise)
(not (hash-table/get *premise-outness* premise #f)))

(define (mark-premise-in! premise)
(hash-table/remove! *premise-outness* premise))

(define (mark-premise-out! premise)
(hash-table/put! *premise-outness* premise #t))

We attach premise-nogoods to premises the same way as their mem-
bership in the global worldview.

(define *premise-nogoods* (make-eq-hash-table))

(define (premise-nogoods premise)
(hash-table/get *premise-nogoods* premise ’()))

(define (set-premise-nogoods! premise nogoods)
(hash-table/put! *premise-nogoods* premise nogoods))

(define *number-of-calls-to-fail* 0)

42

C Generic Primitives

C.1 Definitions

(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define

(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define
(define

generic-+
generic--
generic-—*
generic-/
generic-abs

(make-generic-operator
(make-generic-operator
(make-generic-operator
(make-generic-operator
(make-generic-operator

NN NN

1

+4)
- =)
I % *))
/)
’abs abs))

generic-square (make-generic-operator 1 ’square square))
generic-sqrt (make-generic-operator 1 ’sqrt sqrt))

generic-=
generic-<
generic->
generic-<=
generic->=
generic-not
generic-and
generic-or

(make-generic-operator
(make-generic-operator
(make-generic-operator
(make-generic-operator
(make-generic-operator
(make-generic-operator
(make-generic-operator
(make-generic-operator

NNNFEDNDNNDDNDN

= =)

< <))

> >))

K= <=))

>= >=))

’not not))

’and boolean/and))
’or boolean/or))

adder (function->propagator-constructor generic-+))
subtractor (function->propagator-constructor generic--))
multiplier (function->propagator-constructor generic-x*))
divider (function->propagator-constructor generic-/))

absolute-value (function->propagator-constructor generic-abs))
squarer (function->propagator-constructor generic-square))

sqrter (function->propagator-constructor generic-sqrt))
=7 (function->propagator-constructor generic-=))

<? (function->propagator-constructor generic-<))

>? (function->propagator-constructor generic->))

<=7 (function->propagator-constructor generic-<=))

>=?7 (function->propagator-constructor generic->=))
inverter (function->propagator-constructor generic-not))
conjoiner (function->propagator-constructor generic-and))
disjoiner (function->propagator-constructor generic-or))

43

C.2 Intervals

(define (->interval x)
(if (interval? x)
X
(make-interval x x)))

(define (coercing coercer f)
(lambda args
(apply f (map coercer args))))

(assign-operation ’* mul-interval interval? interval?)

(assign-operation ’* (coercing ->interval mul-interval) number? interval?)
(assign-operation ’* (coercing ->interval mul-interval) interval? number?)
(assign-operation ’/ div-interval interval? interval?)

(assign-operation ’/ (coercing ->interval div-interval) number? interval?)
(assign-operation ’/ (coercing ->interval div-interval) interval? number?)
(assign-operation ’square square-interval interval?)

(assign-operation ’sqrt sqrt-interval interval?)

44

C.3 Supported Values

(define (flat? thing)
(or (interval? thing)

(number? thing)
(boolean? thing)))

(define (v&s-unpacking f)
(lambda args
(supported
(apply f (map v&s-value args))
(apply merge-supports args))))

(define (->v&s thing)
(if (v&s? thing)
thing
(supported thing > ())))

(for-each
(lambda (name underlying-operation)
(assign-operation
name (v&s-unpacking underlying-operation) v&s? v&s?)
(assign-operation
name (coercing ->v&s underlying-operation) v&s? flat?)
(assign-operation
name (coercing ->v&s underlying-operation) flat? v&s?))
'(+ - % / = < > <= >= and or)
(list generic-+ generic-- generic-* generic-/
generic-= generic-< generic-> generic-<= generic->=
generic-and generic-or))

(for-each
(lambda (name underlying-operation)
(assign-operation
name (v&s-unpacking underlying-operation) v&s?))
’(abs square sqrt not)
(list generic-abs generic-square generic-sqrt generic-not))

(assign-operation ’merge (coercing ->v&s v&s-merge) v&s? flat?)
(assign-operation ’merge (coercing ->v&s v&s-merge) flat? v&s?)

Observe how uniform this is if we are willing to forgo the refinement that
(* 0 x) is O irrespective of the dependencies of x.

45

C.4 Truth Maintenance Systems

(define (tms-unpacking f)
(lambda args
(let ((relevant-information (map tms-query args)))
(if (any nothing? relevant-information)
nothing
(make-tms (list (apply f relevant-information)))))))

(define (full-tms-unpacking f)
(tms-unpacking (v&s-unpacking £)))

(define (->tms thing)
(if (tms? thing)
thing
(make-tms (1list (->v&s thing)))))

(for-each
(lambda (name underlying-operation)
(assign-operation
name (full-tms-unpacking underlying-operation) tms? tms?)
(assign-operation
name (coercing ->tms underlying-operation) tms? v&s?)
(assign-operation
name (coercing ->tms underlying-operation) v&s? tms?)
(assign-operation
name (coercing ->tms underlying-operation) tms? flat?)
(assign-operation
name (coercing ->tms underlying-operation) flat? tms?))
’(+ - % / = < > <= >= and or)
(list generic-+ generic-- generic-* generic-/
generic-= generic-< generic-> generic-<= generic->=
generic-and generic-or))

(for-each
(lambda (name underlying-operation)
(assign-operation
name (full-tms-unpacking underlying-operation) tms?))
’(abs square sqrt not)
(list generic-abs generic-square generic-sqrt generic-not))

(assign-operation ’merge (coercing ->tms tms-merge) tms? v&s?)
(assign-operation ’merge (coercing ->tms tms-merge) v&s? tms?)
(assign-operation ’merge (coercing ->tms tms-merge) tms? flat?)
(assign-operation ’merge (coercing ->tms tms-merge) flat? tms?)

46

C.5 Conditionals

The conditional propagator is nontrivial because, when given a supported
value say, it both must branch correctly even if given a supported #f
(which would read as a true value if naively passed to Scheme’s native
if), and must attach the support of the predicate to the support of the
result produced by that branch.

We accomplish this by introducing two additional generic operations
and adding appropriate methods to them.

(define (conditional p if-true if-false output)
(propagator (list p if-true if-false)
(lambda ()
(let ((predicate (content p)))
(if (nothing? predicate)

’done

(add-content

output

(if (generic-true? predicate)
(generic-ignore-first predicate (content if-true))
(generic-ignore-first predicate (content if-false)))))))))

(define true? (lambda (x) (not (mot x))))

(define generic-true? (make-generic-operator 1 ’true? true?))
(assign-operation

’true? (lambda (v&s) (generic-true? (v&s-value v&s))) v&s7)
(assign-operation

’true? (lambda (tms) (generic-true? (tms-query tms))) tms?)

(define generic-ignore-first
(make-generic-operator 2 ’ignore-first ignore-first))

47

((lambda (name underlying-operation)
(assign-operation
name (v&s-unpacking underlying-operation) v&s? v&s?)
(assign-operation
name (coercing ->v&s underlying-operation) v&s? flat?)
(assign-operation
name (coercing ->v&s underlying-operation) flat? v&s?)

(assign-operation

name (full-tms-unpacking underlying-operation) tms? tms?)

(assign-operation

name (coercing ->tms underlying-operation) tms? v&s?)

(assign-operation

name (coercing ->tms underlying-operation) v&s? tms?)

(assign-operation

name (coercing ->tms underlying-operation) tms? flat?)

(assign-operation

name (coercing ->tms underlying-operation) flat? tms?))
’ignore-first generic-ignore-first)

The same trick also applies to apply; that is, if one is applying a
supported procedure, the value returned by that procedure must depend
upon the justification of the procedure. The similarity of if with apply
is not surprising given the Church encoding of booleans as procedures
that ignore one or the other of their arguments.

One problem that can arise with this strategy, however, is that the
resulting code is not tail recursive because generic-ignore-first must
wait for the result in order to attach the dependencies from the procedure
to it. We suspect that this problem may be solvable by attaching the
justification to the continuation that will accept the result. [12]

48

References

[1]

[3]

[4]

[10]

[11]

[12]
[13]

A. Abdelmeged, C. Hang, D. Rinehart, and K. Lieberherr. Superres-
olution and P-Optimality in Boolean MAX-CSP Solvers. Transition,
2007.

Harold Abelson and Gerald Jay Sussman with Julie Sussman. Struc-
ture and Interpretation of Computer Programs. MIT Press, 1984,
1996.

A.H. Borning. Thinglab—a constraint-oriented simulation laboratory.

PhD thesis, Stanford University, Stanford, CA, USA, 1979.

Johan de Kleer. Local Methods for Localizing Faults in Electronic
Circuits. AT Memo 394, MIT Artificial Intelligence Laboratory, Cam-
bridge, MA, USA, 1976.

Johan de Kleer and John Seely Brown. Model-based diagnosis in
SOPHIE III. Readings in Model-Based Diagnosis, 1992.

H.P. Dinesman. Superior Mathematical Puzzles, with Detailed Solu-
tions. Simon and Schuster, New York, 1968.

Jon Doyle. Truth Maintenance Systems for Problem Solving. Al
Memo 419, MIT Artificial Intelligence Laboratory, Cambridge, MA,
USA, 1978.

M. Ernst, C. Kaplan, and C. Chambers. Predicate Dispatching: A
Unified Theory of Dispatch. Lecture Notes in Computer Science,
pages 186211, 1998.

Chris Hanson et al. MIT/GNU Scheme Reference Man-
ual, December 2005. http://www.gnu.org/software/mit-
scheme/documentation /mit-scheme-ref/index.html.

R.W. Floyd. Nondeterministic Algorithms. Journal of the ACM
(JACM), 14(4):636-644, 1967.

Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers.
M.I.T. Press, 1993.

Chris Hanson. Personal communication.

Carl E. Hewitt. Planner: A language for proving theorems in robots.
In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 295-301, 1969.

49

[14]

Karl Lieberherr. Information Condensation of Models in the Propo-
sitional Calculus and the P=NP Problem. PhD thesis, ETH Zurich,
1977. 145 pages, in German.

David Allen McAllester. A Three Valued Truth Maintenance Sys-
tem. Al Memo 473, MIT Artificial Intelligence Laboratory, Cam-
bridge, MA, USA, 1978.

John McCarthy. A Basis for a Mathematical Theory of Computa-
tion. In P. Braffort and D. Hirschberg, editors, Computer Program-
ming and Formal Systems, pages 33—70. North-Holland, Amsterdam,
1963.

Jeffrey Mark Siskind and David Allen McAllester. Screamer: A
portable efficient implementation of nondeterministic Common Lisp.
University of Pennsylvania Institute for Research in Cognitive Sci-
ence, tech. report IRCS-93-03, 1993.

Richard Stallman and Gerald Jay Sussman. Forward reasoning and
dependency-directed backtracking in a system for computer-aided
circuit analysis. Artificial Intelligence, 9:135-196, 1977.

Guy L. Steele Jr. The definition and implementation of a computer
programming language based on constraints. Al Memo 595, MIT
Artificial Intelligence Laboratory, Cambridge, MA, USA, 1980.

Guy L. Steele Jr. and Gerald Jay Sussman. Constraints-A Language
for Expressing Almost-Hierarchical Descriptions. Artificial Intelli-
gence, 14(1):1-39, 1980.

Ramin Zabih, David Allen McAllester, and David Chapman. Non-
deterministic Lisp with dependency-directed backtracking. In Pro-
ceedings of AAAI 87, pages 59-64, July 1987, 1987.

50

