MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.945 Spring 2009 Problem Set 2 Issued: Wed. 11 Feb. 2009 Due: Wed. 18 Feb. 2009 Reading: SICP sections 2.4 and 2.5 (Tagged data, Data-directed programming, Generic Operations) If you are really interested in generic dispatch see the paper by Ernst, et al. Do not obsess over the formal semantics, what is really interesting here is the way predicate dispatch can be used to subsume other kinds of dispatch. http://pag.csail.mit.edu/~mernst/pubs/dispatching-ecoop98-abstract.html Code: ghelper.scm, generic-specs.scm, generic-sequences.scm, attached. Documentation: The MIT/GNU Scheme documentation online at http://www.gnu.org/software/mit-scheme/ Generic Operations In this problem set we will explore a variety of methods we can use for implementing and exploiting generic operations. The procedures in the file ghelper.scm are an elegant mechanism for implementing generic-operator dispatch, where the handlers for the generic operators are specified by the predicates that the arguments satisfy. The file generic-specs.scm is an informal programmer's specification of generic operations that can be defined over a variety of ordered linear data structures, such as lists, vectors, and strings. The file, generic-sequences.scm is a beginning implementation of the generic operators specified in generic-specs.scm. ------------- Problem 2.1: Complete the implementation started in generic-sequences.scm to match the specifications in generic-specs.scm. Demonstrate that each of your generic operators works as specified, by showing examples. You should insert your tests as comments in the code you hand in. Notice that the types in the underlying Scheme are not uniformly specified, so this is not entirely trivial: in our seed file, for example, we had to define vector-null?, list-set!, and vector-append just to fill out things a bit. ------------- Operations like sequence:append can be extended to allow the combination of unlike sequences. For example, we might expect to be able to write (sequence:append (list 'a 'b 'c) (vector 'd 'e 'f)) and get back the list (a b c d e f), assuming that we want a sequence of the first argument type to be the sequence type of the result. One way to implement this sort of thing is to write specific handlers for all the combinations of types we might want. This may be a large problem. However, the problem can be mitigated by using coercions, such as vector->list, list->vector, etc. The cost of doing the coercions is the construction of a new intermediate data structure that is not needed in the result. This may or may not be important, depending on the application. With coercions, we make up and use new combinators to help construct the generic operator entries: (define (compose-1st-arg f g) (lambda (x y) (f (g x) y))) (define (compose-2nd-arg f g) (lambda (x y) (f x (g y)))) Using these we can write such things as: (assign-operation generic:binary-append (compose-2nd-arg vector-append list->vector) vector? list?) (assign-operation generic:binary-append (compose-2nd-arg append vector->list) list? vector?) ------------- Problem 2.2: Examine the generic specifications. What generalizations that mix combinations of sequence types may be useful? Amend the specification document so as to include the generalization. (Turn in the amended specification sheet with your changes clearly indicated.) Amend your implementation to make these generalizations. Some of the coercions that you may need are provided by Scheme, but others may need to be written, such as vector->string. (Consult the online MIT/GNU Scheme reference manual to see what is and is not provided.) ------------- The code for sequence:append illustrates an interesting problem. Our generic dispatch program does not allow us to make generic operations with unspecified arity -- that take many arguments -- such as addition. We programmed around that restriction by defining a binary generic operation and then using a folding reduction (fold-right) to extend the binary operation to take an arbitrary number of arguments. However, the folding reduction needs to know the null sequence of the type being constructed. Alternatively, we could have extended the generic dispatch to allow creation of procedures with unspecified arity. This would allow us to move the folding to the type-specific procedures rather than make it a wrapper around the binary generic procedure. ------------- Problem 2.3 Is this a good idea? (Please state and argue your opinion.) Assuming that we want to do this, what changes would you have to make in the ghelper.scm file? For example, how would make-generic-operator have to change? assign-operation? We do not want you to actually implement these changes, just think about what would have to be done and informally describe your conclusions. ------------- Ben Bitdiddle is pleased with our generic sequences but notes that, beyond generic N-tuples, it is useful also to have generic sets. He proposes that we further extend our language with: (generic:sequence->set ) Returns a list corresponding to with no duplicates. Duplication is determined using EQUAL? (not EQ? nor EQV?). The remaining traditional set operations are straightforward: (set:equal? ) (set:union ) (set:intersection ) (set:difference ) - E.g. {A,B,C}\{9,B,D}={A,C} (set:strict-subset? ) Alyssa P. Hacker is quick to point out that an efficient way to implement sets is as sorted, irredundant lists. She adds, ``Of course, this would require a generic:less? predicate to induce a total order on the potential set elements.'' To that end, Alyssa proposes the following ordering on types of objects: null < Boolean < char < number < symbol < string < vector < list She notes that MIT Scheme already provides handy implementations of each of: char len-1 len-2) #f) ;; Invariant: equal lengths ((null? list-1) #f) ; same (else (or (generic:less? (car list-1) (car list-2)) (generic:less? (cdr list-1) (cdr list-2))))))) Alyssa counters that the following is more appropriate: (define (list len-1 len-2) #f) ;; Invariant: equal lengths (else (let prefix ... ) ;;; Constructs a new sequence of the given type and of size n with ;;; the given elements: item-1 ... item-n ;;; (sequence:null ) ;;; Produces the null sequence of the given type ;;; Selecting ;;; ;;; (sequence:ref ) ;;; Returns the ith element of the sequence. We use zero-based ;;; indexing, so for a sequence of length n the ith item is ;;; referenced by (sequence:ref ). ;;; (sequence:size ) ;;; Returns the number of elements in the sequence. ;;; (sequence:type ) ;;; Returns the predicate defining the type of the sequence given. ;;; Testing ;;; ;;; (sequence:null? ) ;;; Returns #t if the sequence is null, otherwise returns #f. ;;; (sequence:equal? ) ;;; Returns #t if the sequences are of the same type and have equal ;;; elements in the same order, otherwise returns #f. ;;; Mutation ;;; ;;; Some sequences are immutable, while others can be changed. ;;; ;;; For those that can be modified we can change an element: ;;; ;;; (sequence:set! ) ;;; Sets the ith element of the sequence to v. ;;; Cutting and Pasting ;;; ;;; (sequence:subsequence ) ;;; The arguments start and end must be exact integers such that ;;; 0 <= start <= end <= (sequence:size ). ;;; Returns a new sequence of the same type as the given sequence, ;;; of size end-start with elements selected from the given sequence. ;;; The new sequence starts with the element of the given sequence ;;; referenced by start. It ends with the element of the given ;;; sequence referenced by end-1. ;;; (sequence:append ... ) ;;; Requires that the sequences are all of the same type. Returns ;;; a new sequence of the type, formed by concatenating the ;;; elements of the given sequences. The size of the new sequence ;;; is the sum of the sizes of the given sequences. ;;; Iterators ;;; ;;; (sequence:generate ) ;;; Makes a new sequence of the given sequence type, of size n. ;;; The ith element of the new sequence is the value of the ;;; function at the index i. ;;; (sequence:map ... ) ;;; Requires that the sequences given are of the same size and ;;; type, and that the arity of the function is n. The ith element ;;; of the new sequence is the value of the function applied to the ;;; n ith elements of the given sequences. ;;; (sequence:for-each ... ) ;;; Requires that the sequences given are of the same size and ;;; type, and that the arity of the procedure is n. Applies the ;;; procedure to the n ith elements of the given sequences; ;;; discards the value. This is done for effect. ;;; Filtration and Search ;;; ;;; (sequence:filter ) ;;; Returns a new sequence with exactly those elements of the given ;;; sequence for which the predicate is true (does not return #f). ;;; ;;; (sequence:get-index ) ;;; Returns the index of the first element of the sequence that ;;; satisfies the predicate. Returns #f if no element of the ;;; sequence satisfies the predicate. ;;; ;;; (sequence:get-element ) ;;; Returns the first element of the sequence that satisfies the ;;; predicate. Returns #f if no element of the sequence satisfies ;;; the predicate. ;;; Accumulation ;;; ;;; (sequence:fold-right ) ;;; Returns the result of applying the given binary function, ;;; from the right, starting with the initial value. ;;; For example, ;;; (sequence:fold-right list 'end '(a b c)) ;;; => (a (b (c end))) ;;; ;;; (sequence:fold-left ) ;;; Returns the result of applying the given binary function, ;;; starting with the initial value, from the left. ;;; For example, ;;; (sequence:fold-left list 'start '(a b c)) ;;; => (((start a) b) c) ;;;; Generic sequence operator definitions ;;; generic-sequences.scm ;;; First we declare the operators we want to be generic. ;;; Each declaration specifies the arity (number of arguments) ;;; and the default operation, if necessary. (define sequence:null (make-generic-operator 1 #f)) (define sequence:ref (make-generic-operator 2 #f)) (define sequence:size (make-generic-operator 1 #f)) (define sequence:type (make-generic-operator 1 #f)) (define sequence:null? (make-generic-operator 1 #f)) (define sequence:equal? (make-generic-operator 2 #f)) (define sequence:set! (make-generic-operator 3 #f)) (define sequence:subsequence (make-generic-operator 3 #f)) ;;; sequence:append takes multiple arguments. It is defined in terms ;;; of a binary generic append that takes a sequence and a list of ;;; sequences. (define (sequence:append . sequences) (if (null? sequences) (error "Need at least one sequence for append")) (let ((type? (sequence:type (car sequences)))) (if (not (for-all? (cdr sequences) type?)) (error "All sequences for append must be of the same type" sequences)) (fold-right generic:binary-append (sequence:null type?) sequences))) (define generic:binary-append (make-generic-operator 2 #f)) ;;; Implementations of the generic operators. (define (any? x) #t) (define (constant val) (lambda (x) val)) (define (is-exactly val) (lambda (x) (eq? x val))) (assign-operation sequence:null (constant "") (is-exactly string?)) (assign-operation sequence:null (constant '()) (is-exactly list?)) (assign-operation sequence:null (constant #()) (is-exactly vector?)) (assign-operation sequence:ref string-ref string? exact-nonnegative-integer?) (assign-operation sequence:ref list-ref list? exact-nonnegative-integer?) (assign-operation sequence:ref vector-ref vector? exact-nonnegative-integer?) (assign-operation sequence:size string-length string?) (assign-operation sequence:size length list?) (assign-operation sequence:size vector-length vector?) (assign-operation sequence:type (constant string?) string?) (assign-operation sequence:type (constant list?) list?) (assign-operation sequence:type (constant vector?) vector?) (define (vector-null? v) (= (vector-length v) 0)) (assign-operation sequence:null? string-null? string?) (assign-operation sequence:null? null? list?) (assign-operation sequence:null? vector-null? vector?) ;;; To assign to the ith element of a list: (define (list-set! list i val) (cond ((null? list) (error "List does not have enough elements" i)) ((= i 0) (set-car! list val)) (else (list-set! (cdr list) (- i 1) val)))) (assign-operation sequence:set! string-set! string? exact-nonnegative-integer? any?) (assign-operation sequence:set! list-set! list? exact-nonnegative-integer? any?) (assign-operation sequence:set! vector-set! vector? exact-nonnegative-integer? any?) (assign-operation sequence:subsequence substring string? exact-nonnegative-integer? exact-nonnegative-integer?) (assign-operation sequence:subsequence sublist list? exact-nonnegative-integer? exact-nonnegative-integer?) (assign-operation sequence:subsequence subvector vector? exact-nonnegative-integer? exact-nonnegative-integer?) (define (vector-append v1 v2) (let ((n1 (vector-length v1)) (n2 (vector-length v2))) (make-initialized-vector (+ n1 n2) (lambda (i) (if (< i n1) (vector-ref v1 i) (vector-ref v2 (- i n1))))))) (assign-operation generic:binary-append string-append string? string?) (assign-operation generic:binary-append append list? list?) (assign-operation generic:binary-append vector-append vector? vector?) ;;;; Most General Generic-Operator Dispatch ;;; ghelper.scm (declare (usual-integrations)) ;;; Generic-operator dispatch is implemented here by a discrimination ;;; list, where the arguments passed to the operator are examined by ;;; predicates that are supplied at the point of attachment of a ;;; handler (by ASSIGN-OPERATION). ;;; To be the correct branch all arguments must be accepted by ;;; the branch predicates, so this makes it necessary to ;;; backtrack to find another branch where the first argument ;;; is accepted if the second argument is rejected. Here ;;; backtracking is implemented by OR. (define (make-generic-operator arity default-operation) (let ((record (make-operator-record arity))) (define (operator . arguments) (if (not (= (length arguments) arity)) (error:wrong-number-of-arguments operator arity arguments)) (apply (or (let per-arg ((tree (operator-record-tree record)) (args arguments)) (let per-pred ((tree tree)) (and (pair? tree) (if ((caar tree) (car args)) (if (pair? (cdr args)) (or (per-arg (cdar tree) (cdr args)) (per-pred (cdr tree))) (cdar tree)) (per-pred (cdr tree)))))) default-operation (error:no-applicable-methods operator arguments)) arguments)) (hash-table/put! *generic-operator-table* operator record) operator)) (define *generic-operator-table* (make-eq-hash-table)) (define (make-operator-record arity) (cons arity '())) (define (operator-record-arity record) (car record)) (define (operator-record-tree record) (cdr record)) (define (set-operator-record-tree! record tree) (set-cdr! record tree)) (define (assign-operation operator handler . argument-predicates) (let ((record (let ((record (hash-table/get *generic-operator-table* operator #f)) (arity (length argument-predicates))) (if record (begin (if (not (= arity (operator-record-arity record))) (error "Incorrect operator arity:" operator)) record) (let ((record (make-operator-record arity))) (hash-table/put! *generic-operator-table* operator record) record))))) (set-operator-record-tree! record (bind-in-tree argument-predicates handler (operator-record-tree record)))) operator) (define (bind-in-tree keys handler tree) (let loop ((keys keys) (tree tree)) (let ((p.v (assq (car keys) tree))) (if (pair? (cdr keys)) (if p.v (begin (set-cdr! p.v (loop (cdr keys) (cdr p.v))) tree) (cons (cons (car keys) (loop (cdr keys) '())) tree)) (if p.v (begin (warn "Replacing a handler:" (cdr p.v) handler) (set-cdr! p.v handler) tree) (cons (cons (car keys) handler) tree))))))