Scalable Document Fingerprinting

(Extended Abstract)

Nevin Heintze
Bell Laboratories
Murray Hill, NJ 0797/

nch@research.bell-labs.com

Abstract

As more information becomes available electronically,
document search based on texztual similarity is becom-
ing increasingly important, not only for locating doc-
uments online, but also for addressing internet vari-
ants of old problems such as plagiarism and copyright
violation.

This paper presents an online system that pro-
vides reliable search results using modest resources
and scales up to data sets of the order of a million
documents. Qur system provides a practical com-
promise between storage requirements, immunity to
notse introduced by document conversion and secu-
rity needs for plagiarism applications. We present
both quantitative analysis and empirical results to
argue that our design is feasible and effective. A
web-based prototype system is accessible via the URL
http://www.cs.cmu.edu/afs/cs/user/nch/www/koala.html.

1 Introduction

As more information becomes available on the inter-
net, searching for documents based on textual simi-
larity is becoming increasingly useful. For example,
suppose that I have an early version of a research
article, and that I want to determine where it was
eventually published (so that I can cite it appropri-
ately), or find if there is a more up-to-date version
that fixes previous errors, or perhaps locate an old
technical report version that contains more complete

The design and implementation of this system was carried
out in the Summer of 1995 while the author was at Carnegie
Mellon University, supported by the US Postal Service. This
work is the opinion of the author and does not necessarily
represent the view of his employer or the US Postal Service.

proofs or implementation details. Given that the var-
ious version of an article are likely to have a signifi-
cant amount of the text in common, a textually re-
lated document search is very likely to locate the ear-
lier/later versions of the article (assuming they are
accessible to the search engine).

Another application of this kind of search is de-
tection of copyright violations and plagiarism on the
internet. It is now all too easy to obtain a paper over
the internet, modify the cover page to insert your
name in place of the original authors, perhaps change
the title and abstract, and submit the paper as if
it were your own. Given the large number of con-
ferences and journals, and the imperfections of the
refereeing process, the chances of such a paper slip-
ping through undetected are significant. This kind
of plagiarism has been successfully carried out in the
past and was the subject of a recent editorial in the
Communications of the ACM [4]. Arguably it was
inevitable that the individual involved would be dis-
covered. What is surprising is the scope of his activ-
ities, the time it took before he was discovered, and
that he was able to continue with some success even
after his case was well known.

More generally, the internet raises major plagia-
rism and copyright problems because of the ease by
which documents may be copied and modified. Re-
sources such as newsfeed wire services, newspaper ar-
ticles, netnews articles, online books and so forth are
increasingly at risk. As a result, many important
sources of information are not made available online
because the individuals and organizations that own
the information find these risks unacceptable. On
another front, there is increasing concern about pla-
giarism of coursework papers at the college under-
graduate and graduate level.

There approaches to this plagia-
rism/copyright problem. In the first, digital sig-

are two

natures or watermarks are included in a document
[3, 10]. These signatures may involve the use of par-
ticular word spacings or checksums of components of
a document. Unfortunately, these signatures can of-
ten be deleted (particularly if the document is trans-
lated from one format to another). Moreover, these
approaches are not well suited for detecting partial
matches involving modified documents. The sec-
ond approach involves the registration and storage
of documents and subsequent textual matching with
new documents to track copies and modified versions
[1, 6, 11]. This approach has been used in a number
of implemented systems [2, 7, 8, 9].

In this paper we consider the general problem of
textual matching for document search and plagia-
rism/copyright applications. We focus on the ques-
tion of how to build a practical online system that
provides reliable search results for a data set of the
order of a million documents, while using modest re-
sources (0.5G of disk, i.e. about 500 bytes per doc-
ument). Three central issues arise: first, how can
we meet the space constraints; second, how can we
provide reliable search in the presence of noise (to
perform textual matching, we must convert docu-
ments into text, and this is typically a very noisy
and unreliable process), and third, how can we meet
the security needs of plagiarism applications (if it
is easy to circumvent the matching of related docu-
ments by making a handful of selective text changes,
then the system will be of little value for plagiarism
detection). We present both quantitative and em-
pirical analysis of our system. A web-based proto-
type system called Koala is accessible via the URL
http://www.cs.cmu.edu/afs/cs/user/nch/www/koala.html.

Related Work

Most closely related to our work is the Stanford Dig-
ital Library work on SCAM [7, 8, 9]. Their approach
uses relative word frequencies. Similarity between
documents is based on a modified cosine similarity
measure. The storage requirements for this approach
are approximately 30%-65% of the size of the origi-
nal documents ([9] reports data storage requirements
of between 37MB and 79MB for a document set of
120MB, depending on the chunking approach used).
The use of words as the basis for document analy-
sis requires textual representations of documents that
faithfully preserve word boundaries.

Our approach is based on selecting a set of subse-
quences of characters from a document and generat-

ing a fingerprint based on the hash values of these
subsequences. Similarity between two documents is
measured by counting the number of common sub-
sequences in fingerprints (the reliability of this mea-
sure is critically dependent on how the subsequences
are selected from a document). One major differ-
ence from SCAM is that we store less than 500 bytes
per document (400 bytes for the actual fingerprint,
about 20 bytes for document identification such as
URL and email information, and some overhead for
indexing), which typically means that our storage re-
quirements are about 0.5-1% of the size of the original
documents, almost two orders of magnitude less than
the requirements for SCAM. Another significant dif-
ference is that we accept documents in a variety of
different formats (including Postscipt generated from
TeX, PageMaker, Microsoft Word and FrameMaker).
To perform textual comparison on such documents,
we must first convert them to text. The problem
is that such conversions introduce many errors. In
particular, punctuation and word spacing are very
unreliable. An early version of our work was word
based, but did not give satisfactory results. Instead,
we have adopted techniques that are largely insen-
sitive to word boundaries and other common errors
introduced by document conversion.

The idea of selecting a set of pieces of a document
and then hashing these to obtain a document fin-
gerprint is used by Manber in sif, a tool for finding
similar files in a large file system. However, the moti-
vations for sif and our work are very different. First,
sif focuses on similarities of 256% and higher, whereas
we strive to provide reliable information for matches
of 3-5% and lower (the key is to reduce the number
of false positives while retaining important matches).
Second, our work addresses the problem of tolerance
to noise. Third, our work addresses special issues re-
lated to plagiarism applications. As a result, the sif
and Koala system designs differ quite substantially.

2 Textual Relationships

We first address the question of what kinds of textual
relationships should be considered significant. Check-
ing for exact matches is easy, but not satisfactory. For
example it would miss matches where one document
is the result of minor edits of the other. It would
also misses identical documents that differ because of
noise introduced by document translation processes
(Postscript to text conversion, OCR, etc.). More-

over, it would ignore most of the interesting textual
relationships between documents. In this paper, we
consider the following general kinds of relationships
to be significant:

1. Identical documents.

2. Documents that are the result of small ed-
its/corrections to other documents.

3. Documents that are reorganizations of other doc-
uments.

4. Documents that are revisions of other docu-
ments.

5. Documents that are condensed/expanded ver-
sions of other documents (e.g. journal versus
conference versions of papers).

6. Documents that include portions (say several
hundred words) of other documents.

We require that the first five classes of relationships
be identified with very high probability; for the re-
maining class we will tolerate a small number of false
positives and false negatives.

3 Fingerprinting

3.1 Full Fingerprinting

Consider the following simple fingerprinting scheme:
given a document, let the fingerprint of the document
consist of the set of all possible document substrings
of length a. There are I — a 4+ 1 such substrings,
where [is the length of the document. Comparing
two documents under this scheme is simply a mat-
ter of counting the number of substrings common to
both fingerprints: if we compare a document A of size
|A| against a document B, and if n is the number of
substrings common to both documents then n/|A| is
the measure of how much of A is contained in B. If &
is chosen appropriately, this simple fingerprint gives
reliable document matching results. We refer to this
scheme as full fingerprinting. Although it is not prac-
tical (for space reasons), it is a very useful measure of
document similarity, and we shall use it for the eval-
uation of our system in Section 7. (We remark that it
would not be a good idea to construct fingerprints by
chopping up the document into floor(l/a) substrings
by making a cut at every a'® character, because in-
sertion of a character at the start of the document

would shift the substrings by 1 and the resulting fin-
gerprint would be a poor match to the original, even
though the two documents are almost identical).

The choice of a in this fingerprinting scheme is par-
ticularly important, and is subject to two conflicting
constraints. If & is too small, then there will be many
false matches (e.g. if @ is the size of a word, then the
scheme reduces to little more than comparing lists
of words in documents, a poor similarity metric). If
a is too large, then there will be many false nega-
tives because one character change can affect a sub-
strings in the fingerprint (e.g. if & is the size of a
paragraph, then a single character change in a para-
graph would effectively prevent matching for the en-
tire paragraph). We remark that there is no “right”
value for a: we cannot quantitatively or empirically
calculate a definitive value for a. In essence, the
choice of a defines the notion of document similar-
ity for the system. Different values of a will be useful
for different kinds of searches. The value of & used
in this paper is effectively around 30-45 (more pre-
cisely, our strings consist of 20 character sequences
of consonants; we discuss this in detail in Section 5).
We investigate the effect of different values of a in
Section 7.

3.2 Selective Fingerprinting

As mentioned earlier, full fingerprinting is concep-
tually useful but it is not practical because of the
sizes of the fingerprints generated. To reduce the size
of a fingerprint, we select a subset of the substrings
from the full fingerprint. Since the goal of our work
is to treat documents that vary in size from several
thousand words to several hundred thousand words
while meeting very tight space constraints, we have
chosen to select a fixed number of substrings, inde-
pendent of the size of the document. We call this
fized size selective fingerprinting. (An alternative is
to select a fixed proportion of the substrings, so that
the size of the selective fingerprint is proportional to
the size of the document. The main drawback of this
alternative is space consumption: to provide accu-
rate fingerprinting of documents with several thou-
sand words we would need a fingerprint containing
50-100 substrings, and this means fingerprints of size
5000-10000 for documents containing several hundred
thousand words.)

The design a fixed size selective fingerprinting sys-
tem revolves around two choices: fingerprint size and
selection strategy (that is, which substrings do we se-

lect from the full fingerprint). We discuss these in
the next two subsections.

3.3 Fingerprint Size and Security

We employ different size fingerprints for storage and
search: the fingerprints we store in the database
have size 100, but the fingerprints used for search-
ing have size 1000. Importantly, the search finger-
print for a document is a strict superset of the fin-
gerprint used for storage. There are two reasons for
this choice. The first is reliability, and is intimately
connected with design decisions discussed in Subsec-
tion 6.1. The second motivation is security: we want
our system to be resilient under attack by would-be
plagiarists. To illustrate the issue, first suppose that
we use fixed size fingerprints of 100 for both storage
and search and that the selection strategy is publicly
known. In this case, it would be easy for a plagia-
rist to determine which 100 substrings are part of
the fingerprint, and make 100 changes at the appro-
priate places in the plagiarized version so that it no
longer matches the original. If, instead of making the
selection strategy public, we keep it secret (for ex-
ample, we could use some secret seed value to guide
the selecting strategy), then by a trial and error pro-
cess, it is still possible to find an appropriate set of
100 changes (for example, one could chop the original
document into pieces and search separately on these
pieces to identify the selected substrings).

We provide better security by periodically chang-
ing the stored fingerprint of a document. The use
of two fingerprints provides a particularly convenient
way to achieve this: we obtain a new stored finger-
print by simply choosing a different subset of the
search fingerprint (since the ratio of sizes involved
is 100:1000, this still gives considerable scope for
change). The advantage of this approach is that we
do not need to change the search engine (i.e. we
still generate the same search fingerprint) to search
against the modified stored fingerprint. This is im-
portant, because it allows us to change the database
incrementally: we can update the stored fingerprints
of a few documents at a time in a transparent manner.
To support this process, we maintain a list of URLs
for each fingerprinted document so that we can re-
trieve the document and recompute its fingerprint as
desired. We also maintain a contact email address for
each document to help resolve stale URLs. We envi-
sion updating fingerprints on a regular basis (perhaps
once every six months or year), with irregular updates

if there is suspicious activity relating to a document
(such as an unusually large number of searches for
it).

3.4 Selection Strategy

One simple strategy is random selection. However
this gives poor results. For example suppose that
we have a document of length 50,000 (which gives
rise to about 50,000 possible substrings of length «)
and we use 100 substring fingerprints for storage and
1000 substring fingerprints for search. Now consider
matching the document against itself. The proba-
bility that any particular substring appears in the
storage fingerprint is 100/50000 = 1/500. Hence, the
expected number of substrings from the search fin-
gerprint that match the storage fingerprint is 1/500 x
1000 = 2 (i.e. a match ratio of about 2%). The re-
sults are of course much worse for documents that are
related but not identical.

To provide more reliable matches, the selection
strategy must select similar substrings from similar
documents. One approach is employ a string hash
function, and then a fingerprint of size n can be ob-
tained by picking the n substrings with the lowest
hash values. The approach we use is related to the
hash function approach and gives similar results, but
reduces false positives. We defer the details to Sec-
tion 6.

3.5 Limitations of Fixed Length Fin-
gerprints

An important measure of the reliability of a finger-
printing scheme is how closely its results correlate
with those from full fingerprinting. For the fixed
length selective fingerprinting approach we have cho-
sen, the correlation is good for documents of similar
size, but can become problematic for documents of
significantly different size. Specifically, we can show
that for documents of identical size, the expected
match ratios for fixed length selective fingerprinting
are identical to those for full fingerprinting. However
for documents of different size, the results can vary
by a ratio as high as the ratio of sizes of the two
documents. To illustrate the problem, consider the
extreme case of matching a document of 1000 words
against a document of 100,000 words, and suppose
that the smaller document appears once in the larger
document. Now if the stored fingerprint of the larger
document has size 100, then on average there will be

one substring for every 1000 word piece of the larger
document. In other words, the stored fingerprint of
the larger document will have about one substring in
common with the smaller document (i.e. about a 1%
match ratio), compared with the 100% match given
by full fingerprinting. We are currently investigating
ways to address this issue, including using variable
sized fingerprints and flagging low match ratios as
significant if document sizes vary significantly.

4 Fingerprint Storage

Fingerprints are hashed and stored using a very sim-
ple indexed file. Specifically, each substring selected
for inclusion in a fingerprint is hashed to a 28-bit un-
signed integer. The top 16 bits of this 28-bit hash
values are used as an index into a table at the start
of the file. This table consists of pointers into 256
word blocks. The first word of each block contains a
chain pointer to an overflow block (if there is one),
and the second word contains a count of the number
of words used in the block. The remaining 254 words
are used to store fingerprint entries: each entry con-
sists of the lower 12-bits of the 28-bit substring hash
value and a 20-bit document identifier (for a max-
imum of 1M documents), which gives a total of 32
bits, or one word per fingerprint substring. Since we
have 100 substrings per (stored) fingerprint, each fin-
gerprint occupies 400 bytes.

We also store a log of each document in the
database. This log includes the document identifier,
date, URL and a contact email address. Currently
this information is stored as raw ascil and consists
of about 50-80 bytes per document. This can be
compressed substantially. Early experiments indicate
that a factor of 4 should be possible.

The simple indexing scheme we have used has a
number of drawbacks. First, if the file only contains
a small number of fingerprints then there will be a
lot of wasted space because most of the blocks will be
nearly empty. Second, as more documents are added,
the overhead of following overflow blocks can become
significant. For example, if there are 1M documents,
there will be 100M words of fingerprints, which will
occupy about 400-500K blocks, giving rise to an av-
erage chain length of 6-8, or about 6000-8000 disk
probes per document search (search fingerprints have
size 1000). These issues can be addressed by more
sophisticated indexing/disk-management schemes.

5 Document Noise

To generate fingerprints and perform document
matching, we must first obtain text versions of doc-
uments. Unfortunately, this is an unreliable process
that introduces many errors. One of the main for-
mats we wish to support is Postscript. Postscript in-
terpreters can be adapted to produce text, but they
are typically slow and often produce poor results. Al-
ternatively, for Postscript output by specific tools, we
can exploit the format of Postscript generated by the
tool to recover the text quickly and fairly accurately
(this is the case for example with TeX/dvips gener-
ated Postscript). The problem is that the formats
change as the tools evolve, and we need different pro-
grams to deal with different Postscript tools.

For Postscript conversion, the main errors intro-
duced involve punctuation, non-alphabetic characters
and spacing. In particular, word boundaries are often
distorted. There are some secondary problems with
vowels and uppercase/lowercase distinctions. We fac-
tor out these problems by ignoring all but non-vowel
characters and converting everything to lower case.
This allows us to use fast Postscript to text convert-
ers based on string extraction (the translator we use
is a modified version of Jason Black’s ps2txt program,
which in turn is based on a program by Igbal Qazi).
By focusing on non-vowel characters and converting
to lower case, we have obtained very reliable results
for Postscipt generated from TeX, PageMaker, Mi-
crosoft Word and FrameMaker. Note that by consid-
ering only consonants, our approach is not actually
based on document substrings, but rather on charac-
ter subsequences of the original document. We use
subsequences of length 20, and given the typical dis-
tribution of consonants, this corresponds to spans of
about 30-45 characters in the original document.

6 Reducing False Positives

One of the goals of our system is to provide reliable
low level match information, and in particular, to re-
duce the number of false positives. This is important
for a number of reasons. First, the identification of
low level matches appears to be an interesting search
paradigm for locating related documents. Second, it
helps offset some of the limitations of fixed length fin-
gerprints. Third, it has important performance im-
plications: in the context of a database of millions of
documents, false positives can significantly increase
the cost of searching.

6.1 Fingerprint Generation

The selection strategy used to choose the substrings
to include in a fingerprint can have a significant im-
pact on the number of false positives. The issue
is that some substrings occur significantly more fre-
quently than others — sometimes by many orders of
magnitude. Moreover, these frequent substrings are
more likely to be selected in a fingerprint if fingerprint
construction does not consider substring frequency.
To illustrate the potential impact of this, first sup-
pose that each substring is equally likely to appear
in a document, and consider comparing two unre-
lated documents. If the hash function used is well
behaved, then the search fingerprint contains 1000
randomly selected elements from a space of 228 el-
ements and the storage fingerprint contain 100 ran-
domly selected elements from the same space. Now,
the probability that at least one element from the 228
space will appear in both fingerprints is given by the
probability that a particular element appears multi-
plied by the number of possible elements. This can
be approximated by:

100 1000 28
(2? X —) X 2

928
which is about 0.00037. Hence, for a database of 1M
documents, we can expect about 370 random noise
hits for each search.

Now suppose that a fingerprint consists of sub-
strings that are 10 times more frequent than the
average. Then the probability of a one substring
match between two documents increases by a factor
of 10 x 10 to 0.037, or near 40K random noise hits
for a search against 1M documents.

We can significantly reduce false positives by us-
ing a substring selection strategy based on frequency
measures. One way to do this is to compute the set
of all substrings for the document and then pick the
least frequently occurring substrings. However this is
computationally expensive and does not yield good
results because the space of substrings in one docu-
ment is not a useful indication of the overall frequency
of substrings.

Instead, we use a frequency measure based on the
first five letters of a substring. This is not only
cheaper to compute, but gives useful results. The
intuition is that the distribution of five letter se-
quences in a specific document is a useful approxi-
mation to the general distribution of five letter se-
quences. Hence if we pick substrings whose first five
letters occur infrequently in a document, it is likely

that the first five letters of these substrings will occur
infrequently in general. Substrings whose first five
letters occur infrequently are likely to be such that
the entire substring occurs relatively infrequently. In
Section 7 we give experimental evidence that indi-
cates this technique can reduce false positives by more
than a factor of two.

Underlying this approach is the assumption that
the substring frequency distribution of (significant)
overlapping text segments does not vary substan-
tially from the frequency distribution of other text
segments (which would imply that match ratios for
related documents are not affected by focusing on in-
frequent substrings). This assumption appears to be
valid in practice.

One problem with the use of five letter frequency
distributions for substring selection is that different
documents may have slightly different five letter fre-
quency distributions. The use of different size fin-
gerprints for storage and search provides an effective
way to address this. To illustrate why, consider a
substring s that is common to two documents A and
B. If s is selected in B’s stored fingerprint (that
is, s i1s “very infrequent” according to B’s frequency
measure), then although it may not appear in A’s
stored fingerprint (because the frequency measures
for A and B differ), it most probably will appear
in A’s (much larger) search fingerprint because it is
likely to be “moderately infrequently” according to
A’s frequency measure.

We remark that another way to identify infrequent
substrings is to use the fingerprint database to pro-
vide frequency measures. One disadvantage of this
approach is that fingerprint generation can no longer
be performed as a stand-alone operation. However it
has the potential to very reliably identify infrequent
substrings and deserves further investigation.

6.2 Fingerprint Matching

Some substrings are very common in certain collec-
tions of documents. For example, in a technical
report series, substrings generated from addresses,
funding agencies acknowledgements and strings such
as “This work is the opinion of the author and does
not necessarily represent the view of his employer or
..” appear in many documents. Such substrings are
difficult to recognize within the context of a single
document (and so the technique described in the pre-
vious section does not detect them), but require the
context of a collection of documents.

We use a frequency check during search to iso-
late these strings. When a search is performed and
a particular (hashed) substring is looked up in the
database, we check to see if this particular string ap-
pears in 4 or more documents. If it does, then we
ignore it during the search. However, this raises a
security issue: if one could repeatedly add copies of
the one document to the database, then eventually all
of the substrings of the document would be ignored,
and the document would not generate a match. To
address this situation, we cap the number of ignored
substrings at 10. In Section 7, we show that this tech-
nique can reduce false negatives by between 15% and
85%, depending on which of the other checks in this
section are deployed. We remark that the values of 4
and 10 deserve further evaluation using different sizes
and classes of document sets. We also remark that
this technique is an application of a very standard in-
formation processing idea: discount the significance
of common features.

6.3 Document Prologs

While the use of frequency checks provides one way
to ignore common substrings, other techniques can
also be useful. In particular, most of the problematic
strings such as addresses, funding agencies acknowl-
edgements etc., appear at the start of a document.
Also, when a Postscript file is converted to text, the
first words of text are often from the preamble of the
Postscript file and indicate the tools used to generate
the file; they have nothing to do with the actual text
of the document.

One simple approach is to ignore the first part of
a document. In Section 7 we show that ignoring the
first 1000 characters of a document gives useful reduc-
tions of false negatives without significantly affecting
other matches. Moreover, it is useful in tandem with
the technique described in the previous subsection.

7 Results

We now present some experimental results from an
implementation of the system. The main data set we
use is a collection of 366 technical reports from the
Carnegie Mellon University School of Computer Sci-
ence (our set essentially consists of all reports avail-
able online as of August 1995). This set consists of
just over 30MB of text. Table 1 gives the distribution
of matches when each document is searched against
all others. The number in parenthesis in the right

hand column is the number of non-identical docu-
ment matches (i.e. 372 - 366). Note that there were
763 matches at the 1% level, which is about two 1%
matches for each document. This is higher than ex-
pected. It reflects the fact that the data set has a
high degree of low-level correlation: it is generated
by a relatively small group of people with shared
experiences and background (for example, people in
this group tend to cite each other’s work). Some of
these low-level commonalities would be removed by
the technique described in Section 6.2, however the
data set is too small for this technique to remove all of
them. The web-based implementation of the system
has a larger database (about 3000 documents) that
includes the technical report data set. When a tech-
nical report is matched against this larger database,
we typically find twice as many 1% matches as we
obtain when matching against just the technical re-
port database. This means that the 2600 other doc-
uments are generating about as many 1% matches as
the technical reports (i.e. a 1% match rate that is
7 times lower). This is partly because this data set
is larger, but also because it does not have the same
degree of low-level correlation (the 2600 “other” doc-
uments are technical reports and papers from a wide
variety of different institutions).

Table 2 compares fixed size selective fingerprinting
with full fingerprinting for a small collection of docu-
ments, and provides evidence of the reliability of se-
lective fingerprinting. The left hand column gives the
match ratios reported by our system, and the right
hand column gives the results for full fingerprinting
as both a match ratio and as raw data (common-
substrings/total-substrings). For this small collection
of documents, selective fingerprinting gives match ra-
tios that are within a factor of two of full fingerprint-
ing, and usually much closer.

To establish the utility of the techniques for re-
ducing false positives, we present two collections of
data. Table 3 considers both (a) dropping frequent
substrings during searching and (b) cutting the first
1000 characters of a document. The first line of the
table gives the match ratio distribution for match-
ing all documents against all documents with both
techniques (a) and (b) enabled. The second line dis-
ables just (a), and the third line disables just (b).
The final line disables (a) and (b). Both techniques
are very useful in isolation, but it is clear that they
address overlapping issues. They are, however, suffi-
ciently different to be useful in tandem.

Table 4 considers the effectiveness of focusing on

| matchrange | 1% [2% [3%-5% | 6%-10% | 11-20% | 21-50% | more than 50% |
| document count | 763 | 98 | 53] 25 [15 | 23 | 372 (6) |

Table 1: Match Distribution for CMU-SCS Technical Report Data Set.

selective fingerprint full fingerprint

match ratio (%) match ratio (%) | matches/total
45 57 | 13206/22994

9 8.7 2005/22994

5 12 2766/22994

29 55 | 22541/41010

1 0.01 5/41010

1 0.01 5/41010

1 0.2 89/41010

1 0.08 34/41010

3 2.6 670/25386

1 3.0 782/25386

0 0 0/22994

0 0.3 76/22994

0 0.03 8/22994

0 0.16 38/22994

0 0.19 45/22994

Table 2: Comparison of Selective Fingerprinting and Full Fingerprinting.

| 1% | 2% | 3%-5% | 6%-10% | 11-20% | 21-50% | more than 50% |

baseline 763 98 53 25 15 23 372 (6)

freq. check off 896 | 107 53 25 15 23 372 (6)
include start | 2618 | 194 100 32 15 19 374 (8)
both disabled | 17598 | 2415 334 35 17 19 374 (8)

Table 3: Reducing False Positives I: frequency checks (search) & document preamble.

infrequent substrings during fingerprint generation
(Subsection 6.1). The first line give the baseline
match ration distribution, and the second line gives
the same results when substrings are selected without
regard for frequency. This table indicates a reduction
of false positives by more than a factor of two.

The next two tables investigate the effect of finger-
print size. In Table 5, the size of the stored fingerprint
is varied from 10 to 500 (the baseline value is 100),
while the search fingerprint remains constant at 1000.
In Table 6, the size of the search fingerprint is varied
from 100 to 5000 (the baseline value is 1000), while
the search fingerprint remains constant at 100. The
results indicate that our system is surprisingly insen-
sitive to changes in fingerprint sizes. The use of 100
for storage and 1000 for searching yields a good trade-
off between search reliability and the level of positive
matches.

Finally, table 7 shows the effect of changing «, the
length of character subsequences, from 10 to 50 (the
baseline value is 20). As expected, decreasing « has
the effect of significantly increasing the number of
low level matches. Increasing a has the effect of de-
creasing both the number of low-level and high-level
matches.

8 Conclusion

We have presented a system for document compar-
ison based on textual similarity. Target applica-
tions include related document searches and copy-
right /plagiarism protection. Our system uses fixed
size selective fingerprints based on document sub-
strings, and supports reliable and accurate document
comparison with very small fingerprints (about 400
bytes per document). The main novelties of our work
are (a) very low storage requirements (almost two or-
ders of magnitude less than competing systems), (b)
resilience to noise in documents (such as that intro-
duced by conversion from Postscript to text), (c) se-
curity measures to the improve dependability of pla-
giarism searches in the context of an active adversary,
and (d) significant reduction of false positives.

References

[1] C. Anderson, “Robocops: Stewart and
Feder’s mechanized misconduct search”, Na-

ture, 350(6318):454-455, April 1991.

[2]

[3]

S. Brin, J. Davis and H. Garcia-Molina, “Copy
Detection Mechanisms for Digital Documents”,
Proceedings of the ACM SIGMOD Annual Con-
ference, May 1995.

J. Brassil, S. Low, N. Maxemchuk and L.
O’Gorman, “Electronic Marking and Identifica-
tion Techniques to Discourage Document Copy-
ing”, Journal on Selected Areas in Communica-

tions, Volume 13, Number 8, October 1995.

P. J. Denning, “Plagiarism in the web”, Ed-
itorial, Communications of the ACM, 38(12),
December 1995.

U. Manber, “Finding similar files in a large
file system”, Proceedings of the 1994 USENIX
Conference, pp. 1-10, January 1994.

A. Parker and J. O. Hamblen, “Computer algo-
rithms for plagiarism detection”, IEEE Trans-
actions on Education, 32(2):94-99, May 1989.

N. Shivakumar and H. Garcia-Molina, “SCAM:
A Copy Detection Mechanism for Digital Doc-
uments”, Proceedings of the 2nd International
Conference on Theory and Practice of Digital
Libraries, 1995.

N. Shivakumar and H. Garcia-Molina, “The
SCAM Approach to Copy Detection in Digital
Libraries”, Diglib Magazine, November 1995.

N. Shivakumar and H. Garcia-Molina, “Build-
ing a Scalable and Accurate Copy Detection
Mechanism”, Proceedings of the 3nd Interna-
tional Conference on Theory and Practice of
Digital Libraries, 1996.

N. R. Wagner, “Fingerprinting,” Proceedings of
the 1983 Symposium on Security and Privacy,
pp. 18-22, April 1983.

D. Wheeler “Computer networks are said to
offer new opportunities for plagiarists”, The
Chronicle of Higher Education, pp. 17, 19, June
1993.

| | 1% | 2% | 3%-5% | 6%-10% | 11-20% | 21-50% | more than 50% |

baseline 763 98 53 25 15 23 372 (6)
random | 1634 | 177 104 43 17 29 376 (10)

Table 4: Reducing False Positives II: use of infrequent substrings in fingerprints.

| stored fingerprint | 1% | 2% | 3%-5% | 6%-10% | 11-20% | 21-50% | more than 50% |

10 134 12 17 370 (4)

20 217 19 16 21 370 (4)

50 | — 442 — | 43 39 18 21 369 (3)
100 | 763 98 | 53] 25 | 15 | 23 | 372(6) |
200 | 1507 | 43 49 21 17 19 372 (6)
500 | 2162 | 32 38 25 14 18 372 (6)

Table 5: Effects of Varying Stored Fingerprint Size.

| search fingerprint | 1% | 2% | 3%-5% | 6%-10% | 11-20% | 21-50% | more than 50% |

100 | 364 | 54 36 | 22 20 18 374 (8)

200 | 520 | 66 50 | 19 17 24 371 (5)

500 | 777 | 89 52 | 30 17 20 372 (8)
1000 | 763] 98] 53] 25 | 15 | 23 | 372(6) |
2000 | 976 | 91 63| 21 15 20 373 (7)
5000 | 1064 | 101 62| 32 16 21 372 (6)

Table 6: Effects of Varying Search Fingerprint Size.

| o | 1% | 2% | 3%-5% | 6%-10% | 11-20% | 21-50% | more than 50% |

[10 [6239 [363] 105] 33 | 24 | 22 | 315(9 |
[20] 763] 98] 53] 2 | 15 | 23 | 312(6) |
30 | 411 [70 9] 2 10 20 371 (5)
40 | 366 | 55 2] 2 15 17 371 (5)
50 | 231 | 37 2] 19 13 15 370 (4)

Table 7: Effects of Varying Substring Length.

10

