From 7ad3b8aef5ad4492e94d350c0ce32d89797b3cab Mon Sep 17 00:00:00 2001
From: bryan newbold
Date: Sun, 1 Feb 2009 08:34:55 0500
Subject: cleanup, fixed some math

math/algebra  1 +
math/books to read  33 
math/good books  5 
math/tensors  40 ++++++++++++++++++++++++
4 files changed, 25 insertions(+), 54 deletions()
delete mode 100644 math/books to read
delete mode 100644 math/good books
(limited to 'math')
diff git a/math/algebra b/math/algebra
index b337a2e..96197ff 100644
 a/math/algebra
+++ b/math/algebra
@@ 5,6 +5,7 @@ Algebra
.. note:: Most of the definitions and notation in the section are based on [rudin]_ or [meserve]_
.. listtable:: Closure of binary operators on given sets of numbers
+
* Operation
 :latex:`$+$`
 :latex:`$\times$`
diff git a/math/books to read b/math/books to read
deleted file mode 100644
index ba75d8e..0000000
 a/math/books to read
+++ /dev/null
@@ 1,33 +0,0 @@
===============================================
Math books that look interesting
===============================================

`On formally undecidable propositions of Principa Mathematica and related systems`:title:, by Kurt Godel.

`Computability and Unsolvability`:title:, by Martin Davis.

`Mathematical Foundations of Information Theory`:title:, by A.I. Khinchin.

`Calculus of Variations with Applications to Physics and Engineering`:title:, by Robert Weinstock.

`Relativity, Thermodynamics, and Cosmology`:title:, by Richard Tolman.

`Mathematics Applied to Continuum Mechanics`:title:, by Lee Segel.

`Optimization Theory and Applications`:title:, by Donald Pierre.

`The Variational Principles of Mechanics`:title:, by Cornelius Lanczos.

`Tensor Analysis for Physicists`:title:, by J.A. Schonten.

`Investigations on the Theory of Brownian Movement`:title:, by Albert Einstein.

`Great Experiments in Physics`:title:, ed. by ???.

`Curvature and Homology`:title:, by Samuel Goldberd.

`The Philosophy of Mathematics`:title:, by Stephan Korner.

`The Various and Ingenious Machines of Agostino Ramelli`:title:, by A. Ramelli (!).

`Experiments in Topology`:title:, by Stephan Barr.
diff git a/math/good books b/math/good books
deleted file mode 100644
index bc3efe5..0000000
 a/math/good books
+++ /dev/null
@@ 1,5 +0,0 @@
==========================================
Recommended Math Reading
==========================================

BLANK
diff git a/math/tensors b/math/tensors
index 42fa841..e15270a 100644
 a/math/tensors
+++ b/math/tensors
@@ 8,20 +8,28 @@ Tensors, Differential Geometry, Manifolds
On a manifold, only "short" vectors exist. Longer vectors are in a space tangent to the manifold.
There are points (P), separation vectors (\Delta \vector P), curves ( Q(\zeta) ), tangent vectors ( \delta P / \delta \zeta \equiv \lim_{\Delta \zeta \rightarrow 0} \frac{ \vector{ Q(\zeta+\delta \zeta)  Q(\zeta) } }{\delta \zeta} )
+There are points (:m:`$P$`), separation vectors (:m:`$\Delta \vector P$`),
+curves (:m:`$Q(\zeta)$`), tangent vectors (:m:`$\delta P / \delta \zeta \equiv
+\lim_{\Delta \zeta \rightarrow 0} \frac{ \vector{ Q(\zeta+\delta \zeta) 
+Q(\zeta) } }{\delta \zeta}$`)
Coordinates: \Chi^\alpha (P), where \alpha = 0,1,2,3; Q(\Chi_0, \Chi_1, ...)
+Coordinates: :m:`$\Chi^\alpha (P)$`, where :m:`$\alpha = 0,1,2,3$`;
+:m:`$Q(\Chi_0, \Chi_1, ...)$`
there is an isomorphism between points and coordinates
Coordinate basis: \vector{e_\alpha} \equiv \left( \frac{\partial Q}{\partial \Chi^\alpha} \right)
 for instance, on a sphere with angles \omega, \phi:
 \vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta
+Coordinate basis: :m:`$\vector{e_\alpha} \equiv \left( \frac{\partial
+Q}{\partial \Chi^\alpha} \right$`)
+
+ for instance, on a sphere with angles :m:`$\omega, \phi$`:
+
+ :m:`$\vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta$`
Components of a vector:
 \vector{A} = \frac{\partial P}{\partial \Chi^\alpha }
+
+ :m:`$\vector{A} = \frac{\partial P}{\partial \Chi^\alpha }$`
Directional Derivatives: consider a scalar function defined on a manifold \Psi(P)
 \partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}
+ :m:`$\partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}$`
Mathematicians like to say that the coordinate bases are actually directional derivatives
@@ 32,24 +40,24 @@ A **tensor** :m:`$\bold{T}$` has a number of slots (called it's **rank**), takes
as an example for a rank3 tensor:
:m:`$$\bold{T} ( \alpha \vector{A} + \beta \vector{B}, \vector{C}, \vector{D}) =
 \alpha \bold{T} (\vector{A}, \vector{C}, \vector{D}) +
 \beta \bold{T} (\vector{B}, \vector{C}, \vector{D}) $$`
+\alpha \bold{T} (\vector{A}, \vector{C}, \vector{D}) + \beta \bold{T}
+(\vector{B}, \vector{C}, \vector{D}) $$`
Even a regular vector is a tensor: pass it a second vector and take the
inner product (aka dot product) to get a real.
Define the **metric tensor**
:m:`$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \dot \vector{B}$`. The
+Define the **metric tensor **
+:m:`$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$`. The
metric tensor is rank two and symetric (the vectors A and B could be swapped
without changing the scalar output value) and is the same as the inner product.
:m:`$$\Delta P \dot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \dot B = 1/4[ (A+B)^2  (AB)^2 ]$$`
+:m:`$$\Delta P \cdot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \cdot B = 1/4[ (A+B)^2  (AB)^2 ]$$`
Starting with individual vectors, we can construct tensors by taking the
product of their inner products with empty slots; for example
:m:`$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\_ ,\_ ,\_)$$`
:m:`$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \dot \vector{E})(\vector{B} \dot \vector{F})(\vecotr{C} \dot \vector{G}) $$`
+:m:`$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \cdot \vector{E})(\vector{B} \cdot \vector{F})(\vecotr{C} \cdot \vector{G}) $$`
Spacetime

@@ 57,10 +65,10 @@ Spacetime
Two types of vectors.
Timelike: :m:`$\vector{\Delta P}$`
 (\vector{\Delta P})^2 = (\Delta \Tau)^2
+ :m:`$(\vector{\Delta P})^2 = (\Delta \Tau)^2$`
Spacelike: \vector{\Delta Q}
 (\vector{\Delta Q})^2 = +(\Delta S)^2
+Spacelike: :m:`$\vector{\Delta Q}$`
+ :m:`$(\vector{\Delta Q})^2 = +(\Delta S)^2$`
Because product of "up" and "down" basis vectors must be a positive Kronecker
delta, and timelikes squared come out negative, the time "up" basis must be negative of the time "down" basis vector.

cgit v1.2.1