From a290d583ca3c4dfc39115068f209d64449c93a03 Mon Sep 17 00:00:00 2001 From: bnewbold Date: Sun, 24 Jan 2010 03:39:25 -0500 Subject: math fixes --- math/tensors.page | 44 +++++++++++++++++++++----------------------- 1 file changed, 21 insertions(+), 23 deletions(-) (limited to 'math/tensors.page') diff --git a/math/tensors.page b/math/tensors.page index e1d24fc..7ea1848 100644 --- a/math/tensors.page +++ b/math/tensors.page @@ -1,5 +1,3 @@ - - Tensors, Differential Geometry, Manifolds ============================================ @@ -9,66 +7,66 @@ Most of this content is based on a 2002 Caltech course taught by Kip Thorn (PH23 On a manifold, only "short" vectors exist. Longer vectors are in a space tangent to the manifold. There are points ($P$), separation vectors ($\Delta \vector P$), -curves (:m:`$Q(\zeta)$`), tangent vectors (:m:`$\delta P / \delta \zeta \equiv +curves ($Q(\zeta)$), tangent vectors ($\delta P / \delta \zeta \equiv \lim_{\Delta \zeta \rightarrow 0} \frac{ \vector{ Q(\zeta+\delta \zeta) - -Q(\zeta) } }{\delta \zeta}$`) +Q(\zeta) } }{\delta \zeta}$) -Coordinates: :m:`$\Chi^\alpha (P)$`, where :m:`$\alpha = 0,1,2,3$`; -:m:`$Q(\Chi_0, \Chi_1, ...)$` +Coordinates: $\Chi^\alpha (P)$, where $\alpha = 0,1,2,3$; +$Q(\Chi_0, \Chi_1, ...)$ there is an isomorphism between points and coordinates -Coordinate basis: :m:`$\vector{e_\alpha} \equiv \left( \frac{\partial -Q}{\partial \Chi^\alpha} \right$`) +Coordinate basis: $\vector{e_\alpha} \equiv \left( \frac{\partial +Q}{\partial \Chi^\alpha} \right$) - for instance, on a sphere with angles :m:`$\omega, \phi$`: + for instance, on a sphere with angles $\omega, \phi$: - :m:`$\vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta$` + $\vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta$ Components of a vector: - :m:`$\vector{A} = \frac{\partial P}{\partial \Chi^\alpha }$` + $\vector{A} = \frac{\partial P}{\partial \Chi^\alpha }$ Directional Derivatives: consider a scalar function defined on a manifold \Psi(P) - :m:`$\partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}$` + $\partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}$ Mathematicians like to say that the coordinate bases are actually directional derivatives Tensors ------------ -A **tensor** :m:`$\bold{T}$` has a number of slots (called it's **rank**), takes a vector in each slot, and returns a real number. It is linear in vectors; +A **tensor** $\bold{T}$ has a number of slots (called it's **rank**), takes a vector in each slot, and returns a real number. It is linear in vectors; as an example for a rank-3 tensor: -:m:`$$\bold{T} ( \alpha \vector{A} + \beta \vector{B}, \vector{C}, \vector{D}) = +$$\bold{T} ( \alpha \vector{A} + \beta \vector{B}, \vector{C}, \vector{D}) = \alpha \bold{T} (\vector{A}, \vector{C}, \vector{D}) + \beta \bold{T} -(\vector{B}, \vector{C}, \vector{D}) $$` +(\vector{B}, \vector{C}, \vector{D}) $$ Even a regular vector is a tensor: pass it a second vector and take the inner product (aka dot product) to get a real. Define the **metric tensor** -:m:`$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$`. The +$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$. The metric tensor is rank two and symetric (the vectors A and B could be swapped without changing the scalar output value) and is the same as the inner product. -:m:`$$\Delta P \cdot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \cdot B = 1/4[ (A+B)^2 - (A-B)^2 ]$$` +$$\Delta P \cdot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \cdot B = 1/4[ (A+B)^2 - (A-B)^2 ]$$ Starting with individual vectors, we can construct tensors by taking the product of their inner products with empty slots; for example -:m:`$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\_ ,\_ ,\_)$$` -:m:`$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \cdot \vector{E})(\vector{B} \cdot \vector{F})(\vecotr{C} \cdot \vector{G}) $$` +$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\_ ,\_ ,\_)$$ +$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \cdot \vector{E})(\vector{B} \cdot \vector{F})(\vecotr{C} \cdot \vector{G}) $$ Spacetime -------------- Two types of vectors. -Timelike: :m:`$\vector{\Delta P}$` - :m:`$(\vector{\Delta P})^2 = -(\Delta \Tau)^2$` +Timelike: $\vector{\Delta P}$ + $(\vector{\Delta P})^2 = -(\Delta \Tau)^2$ -Spacelike: :m:`$\vector{\Delta Q}$` - :m:`$(\vector{\Delta Q})^2 = +(\Delta S)^2$` +Spacelike: $\vector{\Delta Q}$ + $(\vector{\Delta Q})^2 = +(\Delta S)^2$ Because product of "up" and "down" basis vectors must be a positive Kronecker delta, and timelikes squared come out negative, the time "up" basis must be negative of the time "down" basis vector. -- cgit v1.2.3