summaryrefslogtreecommitdiffstats
path: root/math/tensors.page
diff options
context:
space:
mode:
Diffstat (limited to 'math/tensors.page')
-rw-r--r--math/tensors.page44
1 files changed, 21 insertions, 23 deletions
diff --git a/math/tensors.page b/math/tensors.page
index e1d24fc..7ea1848 100644
--- a/math/tensors.page
+++ b/math/tensors.page
@@ -1,5 +1,3 @@
-
-
Tensors, Differential Geometry, Manifolds
============================================
@@ -9,66 +7,66 @@ Most of this content is based on a 2002 Caltech course taught by Kip Thorn (PH23
On a manifold, only "short" vectors exist. Longer vectors are in a space tangent to the manifold.
There are points ($P$), separation vectors ($\Delta \vector P$),
-curves (:m:`$Q(\zeta)$`), tangent vectors (:m:`$\delta P / \delta \zeta \equiv
+curves ($Q(\zeta)$), tangent vectors ($\delta P / \delta \zeta \equiv
\lim_{\Delta \zeta \rightarrow 0} \frac{ \vector{ Q(\zeta+\delta \zeta) -
-Q(\zeta) } }{\delta \zeta}$`)
+Q(\zeta) } }{\delta \zeta}$)
-Coordinates: :m:`$\Chi^\alpha (P)$`, where :m:`$\alpha = 0,1,2,3$`;
-:m:`$Q(\Chi_0, \Chi_1, ...)$`
+Coordinates: $\Chi^\alpha (P)$, where $\alpha = 0,1,2,3$;
+$Q(\Chi_0, \Chi_1, ...)$
there is an isomorphism between points and coordinates
-Coordinate basis: :m:`$\vector{e_\alpha} \equiv \left( \frac{\partial
-Q}{\partial \Chi^\alpha} \right$`)
+Coordinate basis: $\vector{e_\alpha} \equiv \left( \frac{\partial
+Q}{\partial \Chi^\alpha} \right$)
- for instance, on a sphere with angles :m:`$\omega, \phi$`:
+ for instance, on a sphere with angles $\omega, \phi$:
- :m:`$\vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta$`
+ $\vector{e_\phi} = \left( \frac{\partial Q(\phi, \theta)}{\partial \phi}\right)_\theta$
Components of a vector:
- :m:`$\vector{A} = \frac{\partial P}{\partial \Chi^\alpha }$`
+ $\vector{A} = \frac{\partial P}{\partial \Chi^\alpha }$
Directional Derivatives: consider a scalar function defined on a manifold \Psi(P)
- :m:`$\partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}$`
+ $\partial_\vector{A} \Psi = A^\alpha \frac{\partial \Psi}{\partial \Chi^\alpha}$
Mathematicians like to say that the coordinate bases are actually directional derivatives
Tensors
------------
-A **tensor** :m:`$\bold{T}$` has a number of slots (called it's **rank**), takes a vector in each slot, and returns a real number. It is linear in vectors;
+A **tensor** $\bold{T}$ has a number of slots (called it's **rank**), takes a vector in each slot, and returns a real number. It is linear in vectors;
as an example for a rank-3 tensor:
-:m:`$$\bold{T} ( \alpha \vector{A} + \beta \vector{B}, \vector{C}, \vector{D}) =
+$$\bold{T} ( \alpha \vector{A} + \beta \vector{B}, \vector{C}, \vector{D}) =
\alpha \bold{T} (\vector{A}, \vector{C}, \vector{D}) + \beta \bold{T}
-(\vector{B}, \vector{C}, \vector{D}) $$`
+(\vector{B}, \vector{C}, \vector{D}) $$
Even a regular vector is a tensor: pass it a second vector and take the
inner product (aka dot product) to get a real.
Define the **metric tensor**
-:m:`$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$`. The
+$\bold{g}(\vector{A}, \vector{B}) = \vector{A} \cdot \vector{B}$. The
metric tensor is rank two and symetric (the vectors A and B could be swapped
without changing the scalar output value) and is the same as the inner product.
-:m:`$$\Delta P \cdot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \cdot B = 1/4[ (A+B)^2 - (A-B)^2 ]$$`
+$$\Delta P \cdot \Delta P \equiv \Delta P^2 \equiv (length of \Delta P)^2 A \cdot B = 1/4[ (A+B)^2 - (A-B)^2 ]$$
Starting with individual vectors, we can construct tensors by taking the
product of their inner products with empty slots; for example
-:m:`$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\_ ,\_ ,\_)$$`
-:m:`$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \cdot \vector{E})(\vector{B} \cdot \vector{F})(\vecotr{C} \cdot \vector{G}) $$`
+$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\_ ,\_ ,\_)$$
+$$\vector{A} \crossop \vector{B} \crossop \vector{C} (\vector{E}, \vector{F}, \vector{G}) = ( \vector{A} \cdot \vector{E})(\vector{B} \cdot \vector{F})(\vecotr{C} \cdot \vector{G}) $$
Spacetime
--------------
Two types of vectors.
-Timelike: :m:`$\vector{\Delta P}$`
- :m:`$(\vector{\Delta P})^2 = -(\Delta \Tau)^2$`
+Timelike: $\vector{\Delta P}$
+ $(\vector{\Delta P})^2 = -(\Delta \Tau)^2$
-Spacelike: :m:`$\vector{\Delta Q}$`
- :m:`$(\vector{\Delta Q})^2 = +(\Delta S)^2$`
+Spacelike: $\vector{\Delta Q}$
+ $(\vector{\Delta Q})^2 = +(\Delta S)^2$
Because product of "up" and "down" basis vectors must be a positive Kronecker
delta, and timelikes squared come out negative, the time "up" basis must be negative of the time "down" basis vector.