1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
|
;;; "srfi-1.scm" SRFI-1 list-processing library -*-scheme-*-
;; Copyright 2001 Aubrey Jaffer
;; Copyright 2003 Sven Hartrumpf
;; Copyright 2003-2004 Lars Buitinck
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
; Some pieces from:
;;;
;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
;;; this code as long as you do not remove this copyright notice or
;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
;;; -Olin
;;@code{(require 'srfi-1)}
;;@ftindex srfi-1
;;
;;@noindent
;;Implements the @dfn{SRFI-1} @dfn{list-processing library} as described
;;at @url{http://srfi.schemers.org/srfi-1/srfi-1.html}
(require 'common-list-functions)
(require 'rev2-procedures) ;for append!
(require 'values)
;;@subheading Constructors
;;@body
;; @code{(define (xcons d a) (cons a d))}.
(define (xcons d a) (cons a d))
;;@body
;; Returns a list of length @1. Element @var{i} is
;;@code{(@2 @var{i})} for 0 <= @var{i} < @1.
(define (list-tabulate len proc)
(do ((i (- len 1) (- i 1))
(ans '() (cons (proc i) ans)))
((< i 0) ans)))
;;@args obj1 obj2
(define cons* list*)
;;@args flist
(define list-copy copy-list)
;;@args count start step
;;@args count start
;;@args count
;;Returns a list of @1 numbers: (@2, @2+@3, @dots{}, @2+(@1-1)*@3).
(define (iota count . args)
(let ((start (if (null? args) 0 (car args)))
(step (if (or (null? args) (null? (cdr args))) 1 (cadr args))))
(list-tabulate count (lambda (idx) (+ start (* step idx))))))
;;@body
;;Returns a circular list of @1, @2, @dots{}.
(define (circular-list obj1 . obj2)
(let ((ans (cons obj1 obj2)))
(set-cdr! (last-pair ans) ans)
ans))
;;@subheading Predicates
;;@args obj
(define proper-list? list?)
;;@body
(define (circular-list? x)
(let lp ((x x) (lag x))
(and (pair? x)
(let ((x (cdr x)))
(and (pair? x)
(let ((x (cdr x))
(lag (cdr lag)))
(or (eq? x lag) (lp x lag))))))))
;;@body
(define (dotted-list? obj)
(not (or (proper-list? obj) (circular-list? obj))))
;;@args obj
(define null-list? null?)
;;@body
(define (not-pair? obj) (not (pair? obj)))
;;@body
(define (list= =pred . lists)
(or (null? lists) ; special case
(let lp1 ((list-a (car lists)) (others (cdr lists)))
(or (null? others)
(let ((list-b (car others))
(others (cdr others)))
(if (eq? list-a list-b) ; EQ? => LIST=
(lp1 list-b others)
(let lp2 ((list-a list-a) (list-b list-b))
(if (null-list? list-a)
(and (null-list? list-b)
(lp1 list-b others))
(and (not (null-list? list-b))
(=pred (car list-a) (car list-b))
(lp2 (cdr list-a) (cdr list-b)))))))))))
;;@subheading Selectors
;;@args pair
(define first car)
;;@args pair
(define second cadr)
;;@args pair
(define third caddr)
;;@args pair
(define fourth cadddr)
;;@body
(define (fifth pair) (car (cddddr pair)))
(define (sixth pair) (cadr (cddddr pair)))
(define (seventh pair) (caddr (cddddr pair)))
(define (eighth pair) (cadddr (cddddr pair)))
(define (ninth pair) (car (cddddr (cddddr pair))))
(define (tenth pair) (cadr (cddddr (cddddr pair))))
;;@body
(define (car+cdr pair) (values (car pair) (cdr pair)))
;;@args lst k
(define (drop lst k) (nthcdr k lst))
(define (take lst k) (butnthcdr k lst))
(define (take! lst k)
(if (or (null? lst) (<= k 0))
'()
(begin (set-cdr! (drop (- k 1) lst) '()) lst)))
;;@args lst k
(define take-right last)
;;@args lst k
(define drop-right butlast)
;;@args lst k
(define drop-right! drop-right)
;;@body
(define (split-at lst k)
(let loop ((l '()) (r lst) (k k))
(if (or (null? r) (= k 0))
(values (reverse! l) r)
(loop (cons (car r) l) (cdr r) (- k 1)))))
(define (split-at! lst k)
(if (= k 0)
(values '() lst)
(let* ((half (drop lst (- k 1)))
(r (cdr half)))
(set-cdr! half '())
(values lst r))))
;;@body
(define (last lst . k)
(if (null? k)
(car (last-pair lst))
(apply take-right lst k)))
;;@subheading Miscellaneous
;;@body
(define (length+ clist) (and (list? clist) (length clist)))
;;Append and append! are provided by R4RS and rev2-procedures.
;;@body
(define (concatenate lists) (reduce-right append '() lists))
(define (concatenate! lists) (reduce-right append! '() lists))
;;Reverse is provided by R4RS.
;;@args lst
(define reverse! nreverse)
;;@body
(define (append-reverse rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(lp (cdr rev-head) (cons (car rev-head) tail)))))
(define (append-reverse! rev-head tail)
(let lp ((rev-head rev-head) (tail tail))
(if (null-list? rev-head) tail
(let ((next-rev (cdr rev-head)))
(set-cdr! rev-head tail)
(lp next-rev rev-head)))))
;;@body
(define (zip list1 . list2) (apply map list list1 list2))
;;@body
(define (unzip1 lst) (map car lst))
(define (unzip2 lst) (values (map car lst) (map cadr lst)))
(define (unzip3 lst) (values (map car lst) (map cadr lst) (map caddr lst)))
(define (unzip4 lst) (values (map car lst) (map cadr lst) (map caddr lst)
(map cadddr lst)))
(define (unzip5 lst) (values (map car lst) (map cadr lst) (map caddr lst)
(map cadddr lst) (map fifth lst)))
;;@body
(define (count pred list1 . list2)
(cond ((null? list2)
(let mapf ((l list1) (count 0))
(if (null? l)
count (mapf (cdr l)
(+ count (if (pred (car l)) 1 0))))))
(else (let mapf ((l list1) (rest list2) (count 0))
(if (null? l)
count
(mapf (cdr l)
(map cdr rest)
(+ count (if (apply pred (car l) (map car rest))
1 0))))))))
;;@subheading Fold and Unfold
;;@args kons knil clist1 clist2 ...
(define (fold f z l1 . l)
(set! l (cons l1 l))
(if (any null? l)
z
(apply fold (cons* f (apply f (append! (map car l) (list z)))
(map cdr l)))))
;;@args kons knil clist1 clist2 ...
(define (fold-right f z l1 . l)
(set! l (cons l1 l))
(if (any null? l)
z
(apply f (append! (map car l)
(list (apply fold-right (cons* f z (map cdr l))))))))
;;@args kons knil clist1 clist2 ...
(define (pair-fold f z l) ;XXX should be multi-arg
(if (null? l)
z
(let ((tail (cdr l)))
(pair-fold f (f l z) tail))))
;;@args kons knil clist1 clist2 ...
(define (pair-fold-right f z l) ;XXX should be multi-arg
(if (null? l)
z
(f l (pair-fold-right f z (cdr l)))))
;;@body
(define (reduce f ridentity list)
(if (null? list) ridentity (fold f (car list) (cdr list))))
(define (reduce-right f ridentity list)
(if (null? list)
ridentity
(let red ((l (cdr list)) (ridentity (car list)))
(if (null? l)
ridentity
(f ridentity (red (cdr l) (car l)))))))
;;; We stop when CLIST1 runs out, not when any list runs out.
;;@args f clist1 clist2 ...
(define (map! f clist1 . lists)
(if (pair? lists)
(let lp ((clist1 clist1) (lists lists))
(if (not (null-list? clist1))
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs/no-test lists))
(lambda (heads tails)
(set-car! clist1 (apply f (car clist1) heads))
(lp (cdr clist1) tails)))))
;; Fast path.
(pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) clist1))
clist1)
;;@args f clist1 clist2 ...
(define (pair-for-each proc clist1 . lists)
(if (pair? lists)
(let lp ((lists (cons clist1 lists)))
(let ((tails (%cdrs lists)))
(if (pair? tails)
(begin (apply proc lists)
(lp tails)))))
;; Fast path.
(let lp ((lis clist1))
(if (not (null-list? lis))
(let ((tail (cdr lis))) ; Grab the cdr now,
(proc lis) ; in case PROC SET-CDR!s LIS.
(lp tail))))))
(define (filter-map f l1 . l)
(let loop ((l (cons l1 l)) (r '()))
(if (any null? l)
(reverse! r)
(let ((x (apply f (map car l))))
(loop (map! cdr l) (if x (cons x r) r))))))
;;@subheading Filtering and Partitioning
;;@args pred list
(define (filter pred lis) ; Sleazing with EQ? makes this one faster.
(let recur ((lis lis))
(if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
(let ((head (car lis))
(tail (cdr lis)))
(if (pred head)
(let ((new-tail (recur tail))) ; Replicate the RECUR call so
(if (eq? tail new-tail) lis
(cons head new-tail)))
(recur tail)))))) ; this one can be a tail call.
;;@args pred list
(define (filter! p? l)
(call-with-values (lambda () (partition! p? l))
(lambda (x y) x)))
;;@args pred list
(define (partition pred lis)
(let recur ((lis lis))
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
(let ((elt (car lis))
(tail (cdr lis)))
(call-with-values ; expanded a receive call
(lambda () (recur tail))
(lambda (in out)
(if (pred elt)
(values (if (pair? out) (cons elt in) lis) out)
(values in (if (pair? in) (cons elt out) lis)))))))))
;;@args pred list
(define remove
(let ((comlist:remove remove))
(lambda (pred l)
(if (procedure? pred)
(filter (lambda (x) (not (pred x))) l)
(comlist:remove pred l))))) ; 'remove' has incompatible semantics in comlist of SLIB!
;;@args pred list
(define (partition! p? l)
(if (null? l)
(values l l)
(let ((p-ptr (cons '*unused* l)) (not-ptr (cons '*unused* l)))
(let loop ((l l) (p-prev p-ptr) (not-prev not-ptr))
(cond ((null? l) (values (cdr p-ptr) (cdr not-ptr)))
((p? (car l)) (begin (set-cdr! not-prev (cdr l))
(loop (cdr l) l not-prev)))
(else (begin (set-cdr! p-prev (cdr l))
(loop (cdr l) p-prev l))))))))
;;@args pred list
(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
;;@subheading Searching
;;@args pred clist
(define find find-if)
;;@args pred clist
(define find-tail member-if)
;;@args pred list
(define (span pred lis)
(let recur ((lis lis))
(if (null-list? lis) (values '() '())
(let ((x (car lis)))
(if (pred x)
(call-with-values ; eliminated a receive call
(lambda () (recur (cdr lis)))
(lambda (prefix suffix)
(values (cons x prefix) suffix)))
(values '() lis))))))
;;@args pred list
(define (span! p? lst)
(let loop ((l lst) (prev (cons '*unused* lst)))
(cond ((null? l) (values lst '()))
((p? (car l)) (loop (cdr l) l))
(else (begin (set-cdr! prev '()) (values lst l))))))
;;@args pred list
(define (break p? l) (span (lambda (x) (not (p? x))) l))
;;@args pred list
(define (break! p? l) (span! (lambda (x) (not (p? x))) l))
;;@args pred clist1 clist2 ...
(define (any pred lis1 . lists)
(if (pair? lists)
;; N-ary case
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs (cons lis1 lists)))
(lambda (heads tails)
(and (pair? heads)
(let lp ((heads heads) (tails tails))
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs tails))
(lambda (next-heads next-tails)
(if (pair? next-heads)
(or (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))))) ; Last PRED app is tail call.
;; Fast path
(and (not (null-list? lis1))
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(or (pred head) (lp (car tail) (cdr tail))))))))
;;@args pred clist1 clist2 ...
(define (list-index pred lis1 . lists)
(if (pair? lists)
;; N-ary case
(let lp ((lists (cons lis1 lists)) (n 0))
(call-with-values ; expanded a receive call
(lambda () (%cars+cdrs lists))
(lambda (heads tails)
(and (pair? heads)
(if (apply pred heads) n
(lp tails (+ n 1)))))))
;; Fast path
(let lp ((lis lis1) (n 0))
(and (not (null-list? lis))
(if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
;;@args obj list =
;;@args obj list
(define member
(let ((old-member member))
(lambda (obj list . pred)
(if (null? pred)
(old-member obj list)
(let ((pred (car pred)))
(find-tail (lambda (ob) (pred ob obj)) list))))))
;;@subheading Deleting
;;@args x list =
;;@args x list
(define (delete-duplicates l =?)
(let loop ((l l) (r '()))
(if (null? l)
(reverse! r)
(loop (cdr l)
(if (member (car l) r =?) r (cons (car l) r))))))
;;@args x list =
;;@args x list
(define delete-duplicates! delete-duplicates)
;;@subheading Association lists
;;@args obj alist pred
;;@args obj alist
(define assoc
(let ((old-assoc assoc))
(lambda (obj alist . pred)
(if (null? pred)
(old-assoc obj alist)
(let ((pred (car pred)))
(find (lambda (pair) (pred obj (car pair))) alist))))))
;; XXX maybe define the following in alist and require that module here?
;;@args key datum alist
(define (alist-cons k d l) (cons (cons k d) l))
;;@args alist
(define (alist-copy l)
(map (lambda (x) (cons (car x) (cdr x))) l))
;;@args key alist =
;;@args key alist
(define (alist-delete k l . opt)
(let ((key=? (if (pair? opt) (car opt) equal?)))
(remove (lambda (x) (key=? (car x) k)) l)))
;;@args key alist =
;;@args key alist
(define (alist-delete! k l . opt)
(let ((key=? (if (pair? opt) (car opt) equal?)))
(remove! (lambda (x) (key=? (car x) k)) l)))
;;@subheading Set operations
;;@args = list1 @dots{}
;;Determine if a transitive subset relation exists between the lists @2
;;@dots{}, using @1 to determine equality of list members.
(define (lset<= =? . l)
(or (null? l)
(letrec ((subset? (lambda (l1 l2)
(or (eq? l1 l2)
(every (lambda (x) (member x l2)) l1)))))
(let loop ((l1 (car l)) (l (cdr l)))
(or (null? l)
(let ((l2 (car l)))
(and (subset? l1 l2)
(loop l2 (cdr l)))))))))
;;@args = list1 list2 @dots{}
(define (lset= =? . l)
(or (null? l)
(let loop ((l1 (car l)) (l (cdr l)))
(or (null? l)
(let ((l2 (car l)))
(and (lset<= =? l1 l2)
(lset<= =? l2 l1)
(loop (if (< (length l1) (length l2)) l1 l2)
(cdr l))))))))
;;@args list elt1 @dots{}
(define (lset-adjoin =? l1 . l2)
(let ((adjoin (lambda (x l)
(if (member x l =?) l (cons x l)))))
(fold adjoin l1 l2)))
;;@args = list1 @dots{}
(define (lset-union =? . l)
(let ((union (lambda (l1 l2)
(if (or (null? l2) (eq? l1 l2))
l1
(apply lset-adjoin (cons* =? l2 l1))))))
(fold union '() l)))
;;@args = list1 list2 @dots{}
(define (lset-intersection =? l1 . l)
(let loop ((l l) (r l1))
(cond ((null? l) r)
((null? (car l)) '())
(else (loop (cdr l)
(filter (lambda (x) (member x (car l) =?)) r))))))
;;@args = list1 list2 ...
(define (lset-difference =? l1 . l)
(call-with-current-continuation
(lambda (return)
(let ((diff (lambda (l1 l2)
(cond ((null? l2) (return '()))
((null? l1) l2)
(else (remove (lambda (x) (member x l1 =?))
l2))))))
(fold diff l1 l)))))
;; Alternatively definition of lset-difference, for large numbers of sets.
;(define (lset-difference =? l1 . l)
; (set! l (cdr (delete-duplicates! (cons l1 l) eq?)))
; (case (length l)
; ((0) l1)
; ((1) (remove (lambda (x) (member x l1 =?)) (car l)))
; (else (apply (lset-difference! (cons* =? (list-copy l1) l))))))
;;@args = list1 ...
(define (lset-xor =? . l)
(let ((xor (lambda (l1 l2) (lset-union =? (lset-difference =? l1 l2)
(lset-difference =? l2 l1)))))
(fold xor '() l)))
;;@args = list1 list2 ...
(define (lset-diff+intersection =? l1 . l)
(let ((u (apply lset-union (cons =? l))))
(values (lset-difference =? l1 u)
(lset-intersection =? l1 u))))
;;@noindent
;;These are linear-update variants. They are allowed, but not
;;required, to use the cons cells in their first list parameter to
;;construct their answer. @code{lset-union!} is permitted to recycle
;;cons cells from any of its list arguments.
;;@args = list1 list2 ...
(define lset-intersection! lset-intersection)
;;@args = list1 list2 ...
(define (lset-difference! =? l1 . l)
(let loop ((l l) (d l1))
(if (or (null? l) (null? d))
d
(loop (cdr l)
(let ((l1 (car l)))
(if (null? l1) d (remove! (lambda (x) (member x l1 =?)) d)))))))
;;@args = list1 ...
(define (lset-union! =? . l)
(let loop ((l l) (u '()))
(if (null? l)
u
(loop (cdr l)
(cond ((null? (car l)) u)
((eq? (car l) u) u)
((null? u) (car l))
(else (append-reverse! (lset-difference! =? (car l) u)
u)))))))
;;@args = list1 ...
(define lset-xor! lset-xor)
;;@args = list1 list2 ...
(define lset-diff+intersection! lset-diff+intersection)
;;;; helper functions from the reference implementation:
;;; LISTS is a (not very long) non-empty list of lists.
;;; Return two lists: the cars & the cdrs of the lists.
;;; However, if any of the lists is empty, just abort and return [() ()].
(define (%cars+cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(call-with-values ; expanded a receive call
(lambda () (car+cdr lists))
(lambda (list other-lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(call-with-values ; expanded a receive call
(lambda () (car+cdr list))
(lambda (a d)
(call-with-values ; expanded a receive call
(lambda () (recur other-lists))
(lambda (cars cdrs)
(values (cons a cars) (cons d cdrs)))))))))
(values '() '()))))))
;;; Like %CARS+CDRS, but blow up if any list is empty.
(define (%cars+cdrs/no-test lists)
(let recur ((lists lists))
(if (pair? lists)
(call-with-values ; expanded a receive call
(lambda () (car+cdr lists))
(lambda (list other-lists)
(call-with-values ; expanded a receive call
(lambda () (car+cdr list))
(lambda (a d)
(call-with-values ; expanded a receive call
(lambda () (recur other-lists))
(lambda (cars cdrs)
(values (cons a cars) (cons d cdrs))))))))
(values '() '()))))
(define (%cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(let ((lis (car lists)))
(if (null-list? lis) (abort '())
(cons (cdr lis) (recur (cdr lists)))))
'())))))
|