blob: 35a9ded1f99567bc95633d0a86d93c78c4377361 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
;;;; "ratize.scm" Find simplest number ratios
;;@code{(require 'rationalize)}
;;@ftindex rationalize
;;The procedure @dfn{rationalize} is interesting because most programming
;;languages do not provide anything analogous to it. Thanks to Alan
;;Bawden for contributing this algorithm.
;;@body
;;Computes the correct result for exact arguments (provided the
;;implementation supports exact rational numbers of unlimited precision);
;;and produces a reasonable answer for inexact arguments when inexact
;;arithmetic is implemented using floating-point.
;;
(define (rationalize x e) (apply / (find-ratio x e)))
;;@code{Rationalize} has limited use in implementations lacking exact
;;(non-integer) rational numbers. The following procedures return a list
;;of the numerator and denominator.
;;@body
;;@0 returns the list of the @emph{simplest}
;;numerator and denominator whose quotient differs from @1 by no more
;;than @2.
;;
;;@format
;;@t{(find-ratio 3/97 .0001) @result{} (3 97)
;;(find-ratio 3/97 .001) @result{} (1 32)
;;}
;;@end format
(define (find-ratio x e) (find-ratio-between (- x e) (+ x e)))
;;@body
;;@0 returns the list of the @emph{simplest}
;;numerator and denominator between @1 and @2.
;;
;;@format
;;@t{(find-ratio-between 2/7 3/5) @result{} (1 2)
;;(find-ratio-between -3/5 -2/7) @result{} (-1 2)
;;}
;;@end format
(define (find-ratio-between x y)
(define (sr x y)
(let ((fx (inexact->exact (floor x))) (fy (inexact->exact (floor y))))
(cond ((>= fx x) (list fx 1))
((= fx fy) (let ((rat (sr (/ (- y fy)) (/ (- x fx)))))
(list (+ (cadr rat) (* fx (car rat))) (car rat))))
(else (list (+ 1 fx) 1)))))
(cond ((< y x) (find-ratio-between y x))
((>= x y) (list x 1))
((positive? x) (sr x y))
((negative? y) (let ((rat (sr (- y) (- x))))
(list (- (car rat)) (cadr rat))))
(else '(0 1))))
|