1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
;;;; "logical.scm", bit access and operations for integers for Scheme
;;; Copyright (C) 1991, 1993, 2001, 2003 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;@
(define integer-expt
(if (provided? 'inexact)
expt
(lambda (n k)
(do ((x n (* x x))
(j k (quotient j 2))
(acc 1 (if (even? j) acc (* x acc))))
((<= j 1)
(case j
((0) acc)
((1) (* x acc))
(else (slib:error 'integer-expt n k))))))))
(define logical:boole-xor
'#(#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
#(1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14)
#(2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13)
#(3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12)
#(4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11)
#(5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10)
#(6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9)
#(7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8)
#(8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7)
#(9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6)
#(10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5)
#(11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4)
#(12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3)
#(13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2)
#(14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1)
#(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)))
(define logical:boole-and
'#(#(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1)
#(0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2)
#(0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3)
#(0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4)
#(0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5)
#(0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6)
#(0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7)
#(0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8)
#(0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9)
#(0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10)
#(0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11)
#(0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12)
#(0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13)
#(0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14)
#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)))
(define (logical:ash-4 x)
(if (negative? x)
(+ -1 (quotient (+ 1 x) 16))
(quotient x 16)))
;@
(define logand
(letrec
((lgand
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) (+ acc (* scl n1)))
((zero? n2) acc)
((zero? n1) acc)
(else (lgand (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (vector-ref (vector-ref logical:boole-and
(modulo n1 16))
(modulo n2 16))
scl)
acc)))))))
(lambda (n1 n2) (lgand n2 n1 1 0))))
;@
(define logior
(letrec
((lgior
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) (+ acc (* scl n1)))
((zero? n2) (+ acc (* scl n1)))
((zero? n1) (+ acc (* scl n2)))
(else (lgior (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (- 15 (vector-ref
(vector-ref logical:boole-and
(- 15 (modulo n1 16)))
(- 15 (modulo n2 16))))
scl)
acc)))))))
(lambda (n1 n2) (lgior n2 n1 1 0))))
;@
(define logxor
(letrec
((lgxor
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) acc)
((zero? n2) (+ acc (* scl n1)))
((zero? n1) (+ acc (* scl n2)))
(else (lgxor (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (vector-ref (vector-ref logical:boole-xor
(modulo n1 16))
(modulo n2 16))
scl)
acc)))))))
(lambda (n1 n2) (lgxor n2 n1 1 0))))
;@
(define (lognot n) (- -1 n))
;@
(define (logtest n1 n2)
(not (zero? (logical:logand n1 n2))))
;@
(define (logbit? index n)
(logical:logtest (logical:integer-expt 2 index) n))
;@
(define (copy-bit index to bool)
(if bool
(logical:logior to (logical:ash 1 index))
(logical:logand to (logical:lognot (logical:ash 1 index)))))
;;@ This procedure is careful not to use more than DEG bits in
;; computing (- (expt 2 DEG) 1)
(define (logical:ones deg)
(if (zero? deg) 0 (+ (* 2 (+ -1 (logical:integer-expt 2 (- deg 1)))) 1)))
;@
(define (bit-field n start end)
(logical:logand (logical:ones (- end start))
(logical:ash n (- start))))
;@
(define (bitwise-if mask n0 n1)
(logical:logior (logical:logand mask n0)
(logical:logand (logical:lognot mask) n1)))
;@
(define (copy-bit-field to start end from)
(logical:bitwise-if (logical:ash (logical:ones (- end start)) start)
(logical:ash from start)
to))
;@
(define (ash n count)
(if (negative? count)
(let ((k (logical:integer-expt 2 (- count))))
(if (negative? n)
(+ -1 (quotient (+ 1 n) k))
(quotient n k)))
(* (logical:integer-expt 2 count) n)))
;@
(define integer-length
(letrec ((intlen (lambda (n tot)
(case n
((0 -1) (+ 0 tot))
((1 -2) (+ 1 tot))
((2 3 -3 -4) (+ 2 tot))
((4 5 6 7 -5 -6 -7 -8) (+ 3 tot))
(else (intlen (logical:ash-4 n) (+ 4 tot)))))))
(lambda (n) (intlen n 0))))
;@
(define logcount
(letrec ((logcnt (lambda (n tot)
(if (zero? n)
tot
(logcnt (quotient n 16)
(+ (vector-ref
'#(0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4)
(modulo n 16))
tot))))))
(lambda (n)
(cond ((negative? n) (logcnt (logical:lognot n) 0))
((positive? n) (logcnt n 0))
(else 0)))))
;;;; Bit order and lamination
;@
(define (logical:rotate k count len)
(set! count (modulo count len))
(logical:logior (logical:logand (ash k count) (logical:ones len))
(logical:ash k (- count len))))
;@
(define (bit-reverse k n)
(do ((m (if (negative? n) (lognot n) n) (ash m -1))
(k (+ -1 k) (+ -1 k))
(rvs 0 (logior (ash rvs 1) (logand 1 m))))
((negative? k) (if (negative? n) (lognot rvs) rvs))))
;@
(define (integer->list k . len)
(if (null? len)
(do ((k k (ash k -1))
(lst '() (cons (odd? k) lst)))
((<= k 0) lst))
(do ((idx (+ -1 (car len)) (+ -1 idx))
(k k (ash k -1))
(lst '() (cons (odd? k) lst)))
((negative? idx) lst))))
;@
(define (list->integer bools)
(do ((bs bools (cdr bs))
(acc 0 (+ acc acc (if (car bs) 1 0))))
((null? bs) acc)))
(define (booleans->integer . bools)
(list->integer bools))
;@
(define (bitwise:laminate . ks)
(define nks (length ks))
(define nbs (apply max (map integer-length ks)))
(do ((kdx (+ -1 nbs) (+ -1 kdx))
(ibs 0 (+ (list->integer (map (lambda (k) (logbit? kdx k)) ks))
(ash ibs nks))))
((negative? kdx) ibs)))
;@
(define (bitwise:delaminate count k)
(define nbs (* count (+ 1 (quotient (integer-length k) count))))
(do ((kdx (- nbs count) (- kdx count))
(lst (vector->list (make-vector count 0))
(map (lambda (k bool) (+ (if bool 1 0) (ash k 1)))
lst
(integer->list (ash k (- kdx)) count))))
((negative? kdx) lst)))
;;;; Gray-code
;@
(define (integer->gray-code k)
(logxor k (ash k -1)))
;@
(define (gray-code->integer k)
(if (negative? k)
(slib:error 'gray-code->integer 'negative? k)
(let ((kln (integer-length k)))
(do ((d 1 (* d 2))
(ans (logxor k (ash k -1)) ; == (integer->gray-code k)
(logxor ans (ash ans (* d -2)))))
((>= (* 2 d) kln) ans)))))
(define (grayter k1 k2)
(define kl1 (integer-length k1))
(define kl2 (integer-length k2))
(if (eqv? kl1 kl2)
(> (gray-code->integer k1) (gray-code->integer k2))
(> kl1 kl2)))
;@
(define (gray-code<? k1 k2)
(not (or (eqv? k1 k2) (grayter k1 k2))))
(define (gray-code<=? k1 k2)
(or (eqv? k1 k2) (not (grayter k1 k2))))
(define (gray-code>? k1 k2)
(and (not (eqv? k1 k2)) (grayter k1 k2)))
(define (gray-code>=? k1 k2)
(or (eqv? k1 k2) (grayter k1 k2)))
(define logical:logand logand)
(define logical:logior logior)
;;(define logical:logxor logxor)
(define logical:lognot lognot)
(define logical:logtest logtest)
;;(define logical:logbit? logbit?)
;;(define logical:copy-bit copy-bit)
(define logical:ash ash)
;;(define logical:logcount logcount)
;;(define logical:integer-length integer-length)
;;(define logical:bit-field bit-field)
;;(define bit-extract bit-field)
(define logical:bitwise-if bitwise-if)
;;(define logical:copy-bit-field copy-bit-field)
(define logical:integer-expt integer-expt)
|