1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
;;;; "logical.scm", bit access and operations for integers for Scheme
;;; Copyright (C) 1991, 1993, 2001, 2003, 2005 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(define logical:boole-xor
'#(#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
#(1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14)
#(2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13)
#(3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12)
#(4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11)
#(5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10)
#(6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9)
#(7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8)
#(8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7)
#(9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6)
#(10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5)
#(11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4)
#(12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3)
#(13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2)
#(14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1)
#(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)))
(define logical:boole-and
'#(#(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1)
#(0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2)
#(0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3)
#(0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4)
#(0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5)
#(0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6)
#(0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7)
#(0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8)
#(0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9)
#(0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10)
#(0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11)
#(0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12)
#(0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13)
#(0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14)
#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)))
(define (logical:ash-4 x)
(if (negative? x)
(+ -1 (quotient (+ 1 x) 16))
(quotient x 16)))
(define (logical:reduce op4 ident)
(lambda args
(do ((res ident (op4 res (car rgs) 1 0))
(rgs args (cdr rgs)))
((null? rgs) res))))
;@
(define logand
(letrec
((lgand
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) (+ acc (* scl n1)))
((zero? n2) acc)
((zero? n1) acc)
(else (lgand (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (vector-ref (vector-ref logical:boole-and
(modulo n1 16))
(modulo n2 16))
scl)
acc)))))))
(logical:reduce lgand -1)))
;@
(define logior
(letrec
((lgior
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) (+ acc (* scl n1)))
((zero? n2) (+ acc (* scl n1)))
((zero? n1) (+ acc (* scl n2)))
(else (lgior (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (- 15 (vector-ref
(vector-ref logical:boole-and
(- 15 (modulo n1 16)))
(- 15 (modulo n2 16))))
scl)
acc)))))))
(logical:reduce lgior 0)))
;@
(define logxor
(letrec
((lgxor
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) acc)
((zero? n2) (+ acc (* scl n1)))
((zero? n1) (+ acc (* scl n2)))
(else (lgxor (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (vector-ref (vector-ref logical:boole-xor
(modulo n1 16))
(modulo n2 16))
scl)
acc)))))))
(logical:reduce lgxor 0)))
;@
(define (lognot n) (- -1 n))
;@
(define (logtest n1 n2)
(not (zero? (logand n1 n2))))
;@
(define (logbit? index n)
(logtest (expt 2 index) n))
;@
(define (copy-bit index to bool)
(if bool
(logior to (arithmetic-shift 1 index))
(logand to (lognot (arithmetic-shift 1 index)))))
;@
(define (bitwise-if mask n0 n1)
(logior (logand mask n0)
(logand (lognot mask) n1)))
;@
(define (bit-field n start end)
(logand (lognot (ash -1 (- end start)))
(arithmetic-shift n (- start))))
;@
(define (copy-bit-field to from start end)
(bitwise-if (arithmetic-shift (lognot (ash -1 (- end start))) start)
(arithmetic-shift from start)
to))
;@
(define (rotate-bit-field n count start end)
(define width (- end start))
(set! count (modulo count width))
(let ((mask (lognot (ash -1 width))))
(define zn (logand mask (arithmetic-shift n (- start))))
(logior (arithmetic-shift
(logior (logand mask (arithmetic-shift zn count))
(arithmetic-shift zn (- count width)))
start)
(logand (lognot (ash mask start)) n))))
;@
(define (arithmetic-shift n count)
(if (negative? count)
(let ((k (expt 2 (- count))))
(if (negative? n)
(+ -1 (quotient (+ 1 n) k))
(quotient n k)))
(* (expt 2 count) n)))
;@
(define integer-length
(letrec ((intlen (lambda (n tot)
(case n
((0 -1) (+ 0 tot))
((1 -2) (+ 1 tot))
((2 3 -3 -4) (+ 2 tot))
((4 5 6 7 -5 -6 -7 -8) (+ 3 tot))
(else (intlen (logical:ash-4 n) (+ 4 tot)))))))
(lambda (n) (intlen n 0))))
;@
(define bitwise-bit-count
(letrec ((logcnt (lambda (n tot)
(if (zero? n)
tot
(logcnt (quotient n 16)
(+ (vector-ref
'#(0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4)
(modulo n 16))
tot))))))
(lambda (n)
(cond ((negative? n) (lognot (logcnt (lognot n) 0)))
((positive? n) (logcnt n 0))
(else 0)))))
;@
(define (logcount n)
(cond ((negative? n) (bitwise-bit-count (lognot n)))
(else (bitwise-bit-count n))))
;@
(define (log2-binary-factors n)
(+ -1 (integer-length (logand n (- n)))))
(define (bit-reverse k n)
(do ((m (if (negative? n) (lognot n) n) (arithmetic-shift m -1))
(k (+ -1 k) (+ -1 k))
(rvs 0 (logior (arithmetic-shift rvs 1) (logand 1 m))))
((negative? k) (if (negative? n) (lognot rvs) rvs))))
;@
(define (reverse-bit-field n start end)
(define width (- end start))
(let ((mask (lognot (ash -1 width))))
(define zn (logand mask (arithmetic-shift n (- start))))
(logior (arithmetic-shift (bit-reverse width zn) start)
(logand (lognot (ash mask start)) n))))
;@
(define (integer->list k . len)
(if (null? len)
(do ((k k (arithmetic-shift k -1))
(lst '() (cons (odd? k) lst)))
((<= k 0) lst))
(do ((idx (+ -1 (car len)) (+ -1 idx))
(k k (arithmetic-shift k -1))
(lst '() (cons (odd? k) lst)))
((negative? idx) lst))))
;@
(define (list->integer bools)
(do ((bs bools (cdr bs))
(acc 0 (+ acc acc (if (car bs) 1 0))))
((null? bs) acc)))
(define (booleans->integer . bools)
(list->integer bools))
;;;;@ SRFI-60 aliases
(define ash arithmetic-shift)
(define bitwise-ior logior)
(define bitwise-xor logxor)
(define bitwise-and logand)
(define bitwise-not lognot)
(define bit-count logcount)
(define bit-set? logbit?)
(define any-bits-set? logtest)
(define first-set-bit log2-binary-factors)
(define bitwise-merge bitwise-if)
(provide 'srfi-60)
;;; Legacy
;;(define (logical:rotate k count len) (rotate-bit-field k count 0 len))
;;(define (logical:ones deg) (lognot (ash -1 deg)))
;;(define integer-expt expt) ; legacy name
|