1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
@code{(require 'array)}
@ftindex array
@defun array? obj
Returns @code{#t} if the @var{obj} is an array, and @code{#f} if not.
@end defun
@noindent
@emph{Note:} Arrays are not disjoint from other Scheme types. Strings
and vectors also satisfy @code{array?}. A disjoint array predicate can
be written:
@example
(define (strict-array? obj)
(and (array? obj) (not (string? obj)) (not (vector? obj))))
@end example
@defun array=? array1 array2
Returns @code{#t} if @var{array1} and @var{array2} have the same rank and shape and the
corresponding elements of @var{array1} and @var{array2} are @code{equal?}.
@example
(array=? (create-array '#(foo) 3 3)
(create-array '#(foo) '(0 2) '(0 2)))
@result{} #t
@end example
@end defun
@defun create-array prototype bound1 bound2 @dots{}
Creates and returns an array of type @var{prototype} with dimensions @var{bound1}, @var{bound2},
@dots{} and filled with elements from @var{prototype}. @var{prototype} must be an array,
vector, or string. The implementation-dependent type of the returned
array will be the same as the type of @var{prototype}; except if that would be a
vector or string with non-zero origin, in which case some variety of
array will be returned.
If the @var{prototype} has no elements, then the initial contents of the returned
array are unspecified. Otherwise, the returned array will be filled
with the element at the origin of @var{prototype}.
@end defun
@noindent
These functions return a prototypical uniform-array enclosing the
optional argument (which must be of the correct type). If the
uniform-array type is supported by the implementation, then it is
returned; defaulting to the next larger precision type; resorting
finally to vector.
@defun ac64 z
@defunx ac64
Returns a high-precision complex uniform-array prototype.
@end defun
@defun ac32 z
@defunx ac32
Returns a complex uniform-array prototype.
@end defun
@defun ar64 x
@defunx ar64
Returns a high-precision real uniform-array prototype.
@end defun
@defun ar32 x
@defunx ar32
Returns a real uniform-array prototype.
@end defun
@defun as64 n
@defunx as64
Returns an exact signed integer uniform-array prototype with at least
64 bits of precision.
@end defun
@defun as32 n
@defunx as32
Returns an exact signed integer uniform-array prototype with at least
32 bits of precision.
@end defun
@defun as16 n
@defunx as16
Returns an exact signed integer uniform-array prototype with at least
16 bits of precision.
@end defun
@defun as8 n
@defunx as8
Returns an exact signed integer uniform-array prototype with at least
8 bits of precision.
@end defun
@defun au64 k
@defunx au64
Returns an exact non-negative integer uniform-array prototype with at
least 64 bits of precision.
@end defun
@defun au32 k
@defunx au32
Returns an exact non-negative integer uniform-array prototype with at
least 32 bits of precision.
@end defun
@defun au16 k
@defunx au16
Returns an exact non-negative integer uniform-array prototype with at
least 16 bits of precision.
@end defun
@defun au8 k
@defunx au8
Returns an exact non-negative integer uniform-array prototype with at
least 8 bits of precision.
@end defun
@defun at1 bool
@defunx at1
Returns a boolean uniform-array prototype.
@end defun
@noindent
When constructing an array, @var{bound} is either an inclusive range of
indices expressed as a two element list, or an upper bound expressed as
a single integer. So
@example
(create-array '#(foo) 3 3) @equiv{} (create-array '#(foo) '(0 2) '(0 2))
@end example
@defun make-shared-array array mapper bound1 bound2 @dots{}
@code{make-shared-array} can be used to create shared subarrays of other
arrays. The @var{mapper} is a function that translates coordinates in
the new array into coordinates in the old array. A @var{mapper} must be
linear, and its range must stay within the bounds of the old array, but
it can be otherwise arbitrary. A simple example:
@example
(define fred (create-array '#(#f) 8 8))
(define freds-diagonal
(make-shared-array fred (lambda (i) (list i i)) 8))
(array-set! freds-diagonal 'foo 3)
(array-ref fred 3 3)
@result{} FOO
(define freds-center
(make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
2 2))
(array-ref freds-center 0 0)
@result{} FOO
@end example
@end defun
@defun array-rank obj
Returns the number of dimensions of @var{obj}. If @var{obj} is not an array, 0 is
returned.
@end defun
@defun array-shape array
Returns a list of inclusive bounds.
@example
(array-shape (create-array '#() 3 5))
@result{} ((0 2) (0 4))
@end example
@end defun
@defun array-dimensions array
@code{array-dimensions} is similar to @code{array-shape} but replaces
elements with a 0 minimum with one greater than the maximum.
@example
(array-dimensions (create-array '#() 3 5))
@result{} (3 5)
@end example
@end defun
@defun array-in-bounds? array index1 index2 @dots{}
Returns @code{#t} if its arguments would be acceptable to
@code{array-ref}.
@end defun
@defun array-ref array index1 index2 @dots{}
Returns the (@var{index1}, @var{index2}, @dots{}) element of @var{array}.
@end defun
@deffn {Procedure} array-set! array obj index1 index2 @dots{}
Stores @var{obj} in the (@var{index1}, @var{index2}, @dots{}) element of @var{array}. The value returned
by @code{array-set!} is unspecified.
@end deffn
|