1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
;;;;"array.scm" Arrays for Scheme
; Copyright (C) 2001, 2003 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@code{(require 'array)}
;;@ftindex array
(require 'record)
(define array:rtd
(make-record-type "array"
'(shape
scales ;list of dimension scales
offset ;exact integer
store ;data
)))
(define array:shape
(let ((shape (record-accessor array:rtd 'shape)))
(lambda (array)
(cond ((vector? array) (list (list 0 (+ -1 (vector-length array)))))
((string? array) (list (list 0 (+ -1 (string-length array)))))
(else (shape array))))))
(define array:scales
(let ((scales (record-accessor array:rtd 'scales)))
(lambda (obj)
(cond ((string? obj) '(1))
((vector? obj) '(1))
(else (scales obj))))))
(define array:store
(let ((store (record-accessor array:rtd 'store)))
(lambda (obj)
(cond ((string? obj) obj)
((vector? obj) obj)
(else (store obj))))))
(define array:offset
(let ((offset (record-accessor array:rtd 'offset)))
(lambda (obj)
(cond ((string? obj) 0)
((vector? obj) 0)
(else (offset obj))))))
(define array:construct
(record-constructor array:rtd '(shape scales offset store)))
;;@args obj
;;Returns @code{#t} if the @1 is an array, and @code{#f} if not.
(define array?
(let ((array:array? (record-predicate array:rtd)))
(lambda (obj) (or (string? obj) (vector? obj) (array:array? obj)))))
;;@noindent
;;@emph{Note:} Arrays are not disjoint from other Scheme types. Strings
;;and vectors also satisfy @code{array?}. A disjoint array predicate can
;;be written:
;;
;;@example
;;(define (strict-array? obj)
;; (and (array? obj) (not (string? obj)) (not (vector? obj))))
;;@end example
;;@body
;;Returns @code{#t} if @1 and @2 have the same rank and shape and the
;;corresponding elements of @1 and @2 are @code{equal?}.
;;
;;@example
;;(array=? (create-array '#(foo) 3 3)
;; (create-array '#(foo) '(0 2) '(0 2)))
;; @result{} #t
;;@end example
(define (array=? array1 array2)
(and (equal? (array:shape array1) (array:shape array2))
(equal? (array:store array1) (array:store array2))))
(define (array:dimensions->shape dims)
(map (lambda (dim) (if (list? dim) dim (list 0 (+ -1 dim)))) dims))
;;@args prototype bound1 bound2 @dots{}
;;
;;Creates and returns an array of type @1 with dimensions @2, @3,
;;@dots{} and filled with elements from @1. @1 must be an array,
;;vector, or string. The implementation-dependent type of the returned
;;array will be the same as the type of @1; except if that would be a
;;vector or string with non-zero origin, in which case some variety of
;;array will be returned.
;;
;;If the @1 has no elements, then the initial contents of the returned
;;array are unspecified. Otherwise, the returned array will be filled
;;with the element at the origin of @1.
(define (create-array prototype . dimensions)
(define range2length (lambda (bnd) (- 1 (apply - bnd))))
;;(if (not (array? prototype)) (set! prototype (vector prototype)))
(let* ((shape (array:dimensions->shape dimensions))
(dims (map range2length shape))
(scales
(do ((dims (reverse (cdr dims)) (cdr dims))
(scls '(1) (cons (* (car dims) (car scls)) scls)))
((null? dims) scls))))
(array:construct
shape
scales
(- (apply + (map * (map car shape) scales)))
(if (string? prototype)
(case (string-length prototype)
((0) (make-string (apply * dims)))
(else (make-string (apply * dims)
(string-ref prototype 0))))
(let ((pshape (array:shape prototype)))
(case (apply * (map range2length pshape))
((0) (make-vector (apply * dims)))
(else (make-vector (apply * dims)
(apply array-ref prototype
(map car pshape))))))))))
;;@noindent
;;These functions return a prototypical uniform-array enclosing the
;;optional argument (which must be of the correct type). If the
;;uniform-array type is supported by the implementation, then it is
;;returned; defaulting to the next larger precision type; resorting
;;finally to vector.
(define (make-prototype-checker name pred? creator)
(lambda args
(case (length args)
((1) (if (pred? (car args))
(creator (car args))
(slib:error name 'incompatible 'type (car args))))
((0) (creator))
(else (slib:error name 'wrong 'number 'of 'args args)))))
(define (integer-bytes?? n)
(lambda (obj)
(and (integer? obj)
(exact? obj)
(or (negative? n) (not (negative? obj)))
(do ((num obj (quotient num 256))
(n (+ -1 (abs n)) (+ -1 n)))
((or (zero? num) (negative? n))
(zero? num))))))
;;@args z
;;@args
;;Returns a high-precision complex uniform-array prototype.
(define Ac64 (make-prototype-checker 'Ac64 complex? vector))
;;@args z
;;@args
;;Returns a complex uniform-array prototype.
(define Ac32 (make-prototype-checker 'Ac32 complex? vector))
;;@args x
;;@args
;;Returns a high-precision real uniform-array prototype.
(define Ar64 (make-prototype-checker 'Ar64 real? vector))
;;@args x
;;@args
;;Returns a real uniform-array prototype.
(define Ar32 (make-prototype-checker 'Ar32 real? vector))
;;@args n
;;@args
;;Returns an exact signed integer uniform-array prototype with at least
;;64 bits of precision.
(define As64 (make-prototype-checker 'As64 (integer-bytes?? -8) vector))
;;@args n
;;@args
;;Returns an exact signed integer uniform-array prototype with at least
;;32 bits of precision.
(define As32 (make-prototype-checker 'As32 (integer-bytes?? -4) vector))
;;@args n
;;@args
;;Returns an exact signed integer uniform-array prototype with at least
;;16 bits of precision.
(define As16 (make-prototype-checker 'As16 (integer-bytes?? -2) vector))
;;@args n
;;@args
;;Returns an exact signed integer uniform-array prototype with at least
;;8 bits of precision.
(define As8 (make-prototype-checker 'As8 (integer-bytes?? -1) vector))
;;@args k
;;@args
;;Returns an exact non-negative integer uniform-array prototype with at
;;least 64 bits of precision.
(define Au64 (make-prototype-checker 'Au64 (integer-bytes?? 8) vector))
;;@args k
;;@args
;;Returns an exact non-negative integer uniform-array prototype with at
;;least 32 bits of precision.
(define Au32 (make-prototype-checker 'Au32 (integer-bytes?? 4) vector))
;;@args k
;;@args
;;Returns an exact non-negative integer uniform-array prototype with at
;;least 16 bits of precision.
(define Au16 (make-prototype-checker 'Au16 (integer-bytes?? 2) vector))
;;@args k
;;@args
;;Returns an exact non-negative integer uniform-array prototype with at
;;least 8 bits of precision.
(define Au8 (make-prototype-checker 'Au8 (integer-bytes?? 1) vector))
;;@args bool
;;@args
;;Returns a boolean uniform-array prototype.
(define At1 (make-prototype-checker 'At1 boolean? vector))
;;@noindent
;;When constructing an array, @var{bound} is either an inclusive range of
;;indices expressed as a two element list, or an upper bound expressed as
;;a single integer. So
;;
;;@example
;;(create-array '#(foo) 3 3) @equiv{} (create-array '#(foo) '(0 2) '(0 2))
;;@end example
;;@args array mapper bound1 bound2 @dots{}
;;@0 can be used to create shared subarrays of other
;;arrays. The @var{mapper} is a function that translates coordinates in
;;the new array into coordinates in the old array. A @var{mapper} must be
;;linear, and its range must stay within the bounds of the old array, but
;;it can be otherwise arbitrary. A simple example:
;;
;;@example
;;(define fred (create-array '#(#f) 8 8))
;;(define freds-diagonal
;; (make-shared-array fred (lambda (i) (list i i)) 8))
;;(array-set! freds-diagonal 'foo 3)
;;(array-ref fred 3 3)
;; @result{} FOO
;;(define freds-center
;; (make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
;; 2 2))
;;(array-ref freds-center 0 0)
;; @result{} FOO
;;@end example
(define (make-shared-array array mapper . dimensions)
(define odl (array:scales array))
(define rank (length dimensions))
(define shape (array:dimensions->shape dimensions))
(do ((idx (+ -1 rank) (+ -1 idx))
(uvt (append (cdr (vector->list (make-vector rank 0))) '(1))
(append (cdr uvt) '(0)))
(uvts '() (cons uvt uvts)))
((negative? idx)
(let* ((ker0 (apply + (map * odl (apply mapper uvt))))
(scales (map (lambda (uvt)
(- (apply + (map * odl (apply mapper uvt))) ker0))
uvts)))
(array:construct
shape
scales
(- (apply + (array:offset array)
(map * odl (apply mapper (map car shape))))
(apply + (map * (map car shape) scales)))
(array:store array))))))
;;@body
;;Returns the number of dimensions of @1. If @1 is not an array, 0 is
;;returned.
(define (array-rank obj)
(if (array? obj) (length (array:shape obj)) 0))
;;@args array
;;Returns a list of inclusive bounds.
;;
;;@example
;;(array-shape (create-array '#() 3 5))
;; @result{} ((0 2) (0 4))
;;@end example
(define array-shape array:shape)
;;@body
;;@code{array-dimensions} is similar to @code{array-shape} but replaces
;;elements with a 0 minimum with one greater than the maximum.
;;
;;@example
;;(array-dimensions (create-array '#() 3 5))
;; @result{} (3 5)
;;@end example
(define (array-dimensions array)
(map (lambda (bnd) (if (zero? (car bnd)) (+ 1 (cadr bnd)) bnd))
(array:shape array)))
(define (array:in-bounds? array indices)
(do ((bnds (array:shape array) (cdr bnds))
(idxs indices (cdr idxs)))
((or (null? bnds)
(null? idxs)
(not (integer? (car idxs)))
(not (<= (caar bnds) (car idxs) (cadar bnds))))
(and (null? bnds) (null? idxs)))))
;;@args array index1 index2 @dots{}
;;Returns @code{#t} if its arguments would be acceptable to
;;@code{array-ref}.
(define (array-in-bounds? array . indices)
(array:in-bounds? array indices))
;;@args array index1 index2 @dots{}
;;Returns the (@2, @3, @dots{}) element of @1.
(define (array-ref array . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(slib:error 'array-ref 'bad-indices indices))
((if (string? store) string-ref vector-ref)
store (apply + (array:offset array) (map * (array:scales array) indices))))
;;@args array obj index1 index2 @dots{}
;;Stores @2 in the (@3, @4, @dots{}) element of @1. The value returned
;;by @0 is unspecified.
(define (array-set! array obj . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(slib:error 'array-set! 'bad-indices indices))
((if (string? store) string-set! vector-set!)
store (apply + (array:offset array) (map * (array:scales array) indices))
obj))
;;; Legacy functions
;; ;;@args initial-value bound1 bound2 @dots{}
;; ;;Creates and returns an array with dimensions @2,
;; ;;@3, @dots{} and filled with @1.
;; (define (make-array initial-value . dimensions)
;; (apply create-array (vector initial-value) dimensions))
|