;;;; "differ.scm" O(NP) Sequence Comparison Algorithm.
;;; Copyright (C) 2001, 2002, 2003 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@noindent
;;@code{diff:edit-length} implements the algorithm:
;;
;;@ifinfo
;;@example
;;S. Wu, E. Myers, U. Manber, and W. Miller,
;; "An O(NP) Sequence Comparison Algorithm,"
;; Information Processing Letters 35, 6 (1990), 317-323.
;; @url{http://www.cs.arizona.edu/people/gene/vita.html}
;;@end example
;;@end ifinfo
;;@ifset html
;;S. Wu,
;;E. Myers, U. Manber, and W. Miller,
;;
;;"An O(NP) Sequence Comparison Algorithm,"
;;Information Processing Letters 35, 6 (1990), 317-323.
;;@end ifset
;;
;;@noindent
;;The values returned by @code{diff:edit-length} can be used to gauge
;;the degree of match between two sequences.
;;
;;@noindent
;;Surprisingly, "An O(NP) Sequence Comparison Algorithm" does not
;;derive the edit sequence; only the sequence length. Developing this
;;linear-space sub-quadratic-time algorithm for computing the edit
;;sequence required hundreds of hours of work. I have submitted a
;;paper describing the algorithm to the Journal of Computational
;;Biology.
;;
;;@noindent
;;If the items being sequenced are text lines, then the computed
;;edit-list is equivalent to the output of the @dfn{diff} utility
;;program. If the items being sequenced are words, then it is like the
;;lesser known @dfn{spiff} program.
(require 'array)
(require 'sort)
;;; p-lim is half the number of gratuitous edits for strings of given
;;; lengths.
;;; When passed #f CC, fp:compare returns edit-distance if successful;
;;; #f otherwise (p > p-lim). When passed CC, fp:compare returns #f.
(define (fp:compare fp CC A M B N =? p-lim)
(define Delta (- N M))
;;(if (negative? Delta) (slib:error 'fp:compare (fp:subarray A 0 M) '> (fp:subarray B 0 N)))
;;(set! compares (+ 1 compares)) ;(print 'fp:compare M N p-lim)
(let loop ((p 0))
(do ((k (- p) (+ 1 k)))
((>= k Delta))
(fp:run fp k A M B N =? CC p))
(do ((k (+ Delta p) (+ -1 k)))
((<= k Delta))
(fp:run fp k A M B N =? CC p))
(let ((fpval (fp:run fp Delta A M B N =? CC p)))
;; At this point, the cost to (fpval-Delta, fpval) is Delta + 2*p
(cond ((and (not CC) (<= N fpval)) (+ Delta (* 2 p)))
((and (not (negative? p-lim)) (>= p p-lim)) #f)
(else (loop (+ 1 p)))))))
;;; Traces runs of matches until they end; then set fp[k]=y.
;;; If CC is supplied, set each CC[y] = min(CC[y], cost) for run.
;;; Returns furthest y reached.
(define (fp:run fp k A M B N =? CC p)
(define y (max (+ 1 (array-ref fp (+ -1 k))) (array-ref fp (+ 1 k))))
(define cost (+ k p p))
(let snloop ((x (- y k))
(y y))
(and CC (<= y N)
(let ((xcst (- M x)))
(cond ((negative? xcst))
(else (array-set! CC
(min (+ xcst cost) (array-ref CC y))
y)))))
;;(set! tick (+ 1 tick))
(cond ((and (< x M) (< y N)
(=? (array-ref A x) (array-ref B y)))
(snloop (+ 1 x) (+ 1 y)))
(else (array-set! fp y k)
y))))
;;; Check that only 1 and -1 steps between adjacent CC entries.
;;(define (fp:step-check A M B N CC)
;; (do ((cdx (+ -1 N) (+ -1 cdx)))
;; ((negative? cdx))
;; (case (- (array-ref CC cdx) (array-ref CC (+ 1 cdx)))
;; ((1 -1) #t)
;; (else (cond ((> 30 (car (array-dimensions CC)))
;; (display "A: ") (print A)
;; (display "B: ") (print B)))
;; (slib:warn
;; "CC" (append (list (max 0 (+ -5 cdx)) ': (min (+ 1 N) (+ 5 cdx))
;; 'of)
;; (array-dimensions CC))
;; (fp:subarray CC (max 0 (+ -5 cdx)) (min (+ 1 N) (+ 5 cdx))))))))
;;; Correct cost jumps left by fp:compare [which visits only a few (x,y)].
;;(define (smooth-costs CC N)
;; (do ((cdx (+ -1 N) (+ -1 cdx))) ; smooth from end
;; ((negative? cdx))
;; (array-set! CC (min (array-ref CC cdx) (+ 1 (array-ref CC (+ 1 cdx))))
;; cdx))
;; (do ((cdx 1 (+ 1 cdx))) ; smooth toward end
;; ((> cdx N))
;; (array-set! CC (min (array-ref CC cdx) (+ 1 (array-ref CC (+ -1 cdx))))
;; cdx))
;; CC)
(define (diff:mid-split M N RR CC cost)
(define b-splt N) ;Default
(define bestrun 0)
(define thisrun 0)
;; RR is not longer than CC. So do for each element of RR.
(let loop ((cdx (+ 1 (quotient N 2)))
(rdx (quotient N 2)))
;;(if (negative? rdx) (slib:error 'negative? 'rdx))
(cond ((eqv? cost (+ (array-ref CC rdx) (array-ref RR (- N rdx)))) rdx)
((eqv? cost (+ (array-ref CC cdx) (array-ref RR (- N cdx)))) cdx)
(else (loop (+ 1 cdx) (+ -1 rdx))))))
;;; Return 0-based shared array.
;;; Reverse RA if END < START.
(define (fp:subarray RA start end)
(define n-len (abs (- end start)))
(if (< end start)
(make-shared-array RA (lambda (idx) (list (- start 1 idx))) n-len)
(make-shared-array RA (lambda (idx) (list (+ start idx))) n-len)))
(define (fp:init! fp fill mindx maxdx)
(do ((idx maxdx (+ -1 idx)))
((< idx mindx))
(array-set! fp fill idx)))
;;; Split A[start-a..end-a] (shorter array) into smaller and smaller chunks.
;;; EDX is index into EDITS.
;;; EPO is insert/delete polarity (+1 or -1)
(define (diff:divide-and-conquer fp CCRR A start-a end-a B start-b end-b edits edx epo =? p-lim)
(define mid-a (quotient (+ start-a end-a) 2))
(define len-b (- end-b start-b))
(define len-a (- end-a start-a))
(let ((tcst (+ p-lim p-lim (- len-b len-a))))
(define CC (fp:subarray CCRR 0 (+ len-b 1)))
(define RR (fp:subarray CCRR (+ len-b 1) (* 2 (+ len-b 1))))
(define M2 (- end-a mid-a))
(define M1 (- mid-a start-a))
(fp:init! CC (+ len-a len-b) 0 len-b)
(fp:init! fp -1 (- (+ 1 p-lim)) (+ 1 p-lim (- len-b M1)))
(fp:compare fp CC
(fp:subarray A start-a mid-a) M1
(fp:subarray B start-b end-b) len-b =? (min p-lim len-a))
(fp:init! RR (+ len-a len-b) 0 len-b)
(fp:init! fp -1 (- (+ 1 p-lim)) (+ 1 p-lim (- len-b M2)))
(fp:compare fp RR
(fp:subarray A end-a mid-a) M2
(fp:subarray B end-b start-b) len-b =? (min p-lim len-a))
;;(smooth-costs CC len-b) (smooth-costs RR len-b)
(let ((b-splt (diff:mid-split len-a len-b RR CC tcst)))
(define est-c (array-ref CC b-splt))
(define est-r (array-ref RR (- len-b b-splt)))
;;(set! splts (cons (/ b-splt (max .1 len-b)) splts))
;;(display "A: ") (array-for-each display (fp:subarray A start-a mid-a)) (display " + ") (array-for-each display (fp:subarray A mid-a end-a)) (newline)
;;(display "B: ") (array-for-each display (fp:subarray B start-b end-b)) (newline)
;;(print 'cc cc) (print 'rr (fp:subarray RR (+ 1 len-b) 0))
;;(print (make-string (+ 7 (* 2 b-splt)) #\-) '^ (list b-splt))
(check-cost! 'CC est-c
(diff2et fp CCRR
A start-a mid-a
B start-b (+ start-b b-splt)
edits edx epo =?
(quotient (- est-c (- b-splt (- mid-a start-a)))
2)))
(check-cost! 'RR est-r
(diff2et fp CCRR
A mid-a end-a
B (+ start-b b-splt) end-b
edits (+ est-c edx) epo =?
(quotient (- est-r (- (- len-b b-splt)
(- end-a mid-a)))
2)))
(+ est-c est-r))))
;;; Trim; then diff sub-arrays; either one longer. Returns edit-length
(define (diff2et fp CCRR A start-a end-a B start-b end-b edits edx epo =? p-lim)
;; (if (< (- end-a start-a) p-lim) (slib:warn 'diff2et 'len-a (- end-a start-a) 'len-b (- end-b start-b) 'p-lim p-lim))
(do ((bdx (+ -1 end-b) (+ -1 bdx))
(adx (+ -1 end-a) (+ -1 adx)))
((not (and (<= start-b bdx)
(<= start-a adx)
(=? (array-ref A adx) (array-ref B bdx))))
(do ((bsx start-b (+ 1 bsx))
(asx start-a (+ 1 asx)))
((not (and (< bsx bdx)
(< asx adx)
(=? (array-ref A asx) (array-ref B bsx))))
;;(print 'trim-et (- asx start-a) '+ (- end-a adx))
(let ((delta (- (- bdx bsx) (- adx asx))))
(if (negative? delta)
(diff2ez fp CCRR B bsx (+ 1 bdx) A asx (+ 1 adx)
edits edx (- epo) =? (+ delta p-lim))
(diff2ez fp CCRR A asx (+ 1 adx) B bsx (+ 1 bdx)
edits edx epo =? p-lim))))
;;(set! tick (+ 1 tick))
))
;;(set! tick (+ 1 tick))
))
;;; Diff sub-arrays, A not longer than B. Returns edit-length
(define (diff2ez fp CCRR A start-a end-a B start-b end-b edits edx epo =? p-lim)
(define len-a (- end-a start-a))
(define len-b (- end-b start-b))
;;(if (> len-a len-b) (slib:error 'diff2ez len-a '> len-b))
(cond ((zero? p-lim) ; B inserts only
(if (= len-b len-a)
0 ; A = B; no edits
(let loop ((adx start-a)
(bdx start-b)
(edx edx))
(cond ((>= bdx end-b) (- len-b len-a))
((>= adx end-a)
(do ((idx bdx (+ 1 idx))
(edx edx (+ 1 edx)))
((>= idx end-b) (- len-b len-a))
(array-set! edits (* epo (+ 1 idx)) edx)))
((=? (array-ref A adx) (array-ref B bdx))
;;(set! tick (+ 1 tick))
(loop (+ 1 adx) (+ 1 bdx) edx))
(else (array-set! edits (* epo (+ 1 bdx)) edx)
;;(set! tick (+ 1 tick))
(loop adx (+ 1 bdx) (+ 1 edx)))))))
((<= len-a p-lim) ; delete all A; insert all B
;;(if (< len-a p-lim) (slib:error 'diff2ez len-a len-b 'p-lim p-lim))
(do ((idx start-a (+ 1 idx))
(edx edx (+ 1 edx)))
((>= idx end-a)
(do ((jdx start-b (+ 1 jdx))
(edx edx (+ 1 edx)))
((>= jdx end-b))
(array-set! edits (* epo (+ 1 jdx)) edx)))
(array-set! edits (* epo (- -1 idx)) edx))
(+ len-a len-b))
(else (diff:divide-and-conquer
fp CCRR A start-a end-a B start-b end-b
edits edx epo =? p-lim))))
;;;Return new vector of edits in correct sequence
(define (diff:order-edits edits cost sign)
(if (negative? sign)
(do ((idx (+ -1 cost) (+ -1 idx)))
((negative? idx))
(array-set! edits (- (array-ref edits idx)) idx)))
(if (zero? cost)
edits
(let ((sedits (sort! edits <))
(nedits (create-array (As32) cost)))
;; Find -/+ boundary
(define len-a (max 0 (- (array-ref sedits 0))))
(define len-b (array-ref sedits (+ -1 cost)))
(do ((idx 0 (+ 1 idx)))
((or (>= idx cost) (positive? (array-ref sedits idx)))
(let loop ((ddx (+ -1 idx))
(idx idx)
(ndx 0)
(adx 0)
(bdx 0))
(define del (if (negative? ddx) 0 (array-ref sedits ddx)))
(define ins (if (>= idx cost) 0 (array-ref sedits idx)))
(cond ((and (>= bdx len-b) (>= adx len-a)) nedits)
((and (negative? del) (>= adx (- -1 del))
(positive? ins) (>= bdx (+ -1 ins)))
(array-set! nedits del ndx)
(array-set! nedits ins (+ 1 ndx))
(loop (+ -1 ddx) (+ 1 idx) (+ 2 ndx)
(+ 1 adx) (+ 1 bdx)))
((and (negative? del) (>= adx (- -1 del)))
(array-set! nedits del ndx)
(loop (+ -1 ddx) idx (+ 1 ndx) (+ 1 adx) bdx))
((and (positive? ins) (>= bdx (+ -1 ins)))
(array-set! nedits ins ndx)
(loop ddx (+ 1 idx) (+ 1 ndx) adx (+ 1 bdx)))
(else
(loop ddx idx ndx (+ 1 adx) (+ 1 bdx))))))))))
;;; len-a < len-b
(define (edits2lcs lcs edits cost A len-a len-b)
(let loop ((edx 0)
(sdx 0)
(adx 0))
(let ((edit (if (< edx cost)
(array-ref edits edx)
0)))
(cond ((>= adx len-a) lcs)
((positive? edit)
(loop (+ 1 edx) sdx adx))
((zero? edit)
(array-set! lcs (array-ref A adx) sdx)
(loop edx (+ 1 sdx) (+ 1 adx)))
((>= adx (- -1 edit))
(loop (+ 1 edx) sdx (+ 1 adx)))
(else
(array-set! lcs (array-ref A adx) sdx)
(loop edx (+ 1 sdx) (+ 1 adx)))))))
;; A not longer than B (M <= N)
(define (diff2edits A M B N =? p-lim)
(define maxdx (if (negative? p-lim) (+ 2 N) (+ 1 p-lim (- N M))))
(define mindx (if (negative? p-lim) (- (+ 1 M)) (- (+ 1 p-lim))))
;;(if (> M N) (slib:error 'diff2edits M '> N))
(let ((fp (create-array (As32) (list mindx maxdx)))
(CCRR (create-array (As32) (* 2 (+ N 1)))))
(fp:init! fp -1 mindx maxdx)
(let ((est (fp:compare fp #f A M B N =? p-lim)))
(and est
(let ((edits (create-array (As32) est)))
(check-cost! 'diff2edits
est
(diff2et fp CCRR A 0 M B 0 N edits 0 1 =?
(quotient (- est (- N M)) 2)))
edits)))))
;; A not longer than B (M <= N)
(define (diff2editlen A M B N =? p-lim)
(define maxdx (if (negative? p-lim) (+ 1 N) (+ 1 p-lim (- N M))))
(define mindx (if (negative? p-lim) (- (+ 1 M)) (- (+ 1 p-lim))))
(let ((fp (create-array (As32) (list mindx maxdx))))
(fp:init! fp -1 mindx maxdx)
(fp:compare fp #f A M B N =? p-lim)))
(define (check-cost! name est cost)
(if (not (eqv? est cost))
(slib:warn "%s: cost check failed %d != %d\\n" name est cost)))
;;@args array1 array2 =? p-lim
;;@args array1 array2 =?
;;@1 and @2 are one-dimensional arrays. The procedure @3 is used
;;to compare sequence tokens for equality.
;;
;;The non-negative integer @4, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns a one-dimensional array of length @code{(quotient (- (+
;;len1 len2) (diff:edit-length @1 @2)) 2)} holding the longest sequence
;;common to both @var{array}s.
(define (diff:longest-common-subsequence A B =? . p-lim)
(define len-a (car (array-dimensions a)))
(define len-b (car (array-dimensions b)))
(set! p-lim (if (null? p-lim) -1 (car p-lim)))
(let ((edits (if (< len-b len-a)
(diff2edits B len-b A len-a =? p-lim)
(diff2edits A len-a B len-b =? p-lim))))
(and edits
(let* ((cost (car (array-dimensions edits)))
(sedit (diff:order-edits edits cost (if (< len-b len-a) -1 1)))
(lcs (create-array A (/ (- (+ len-b len-a) cost) 2))))
(if (< len-b len-a)
(edits2lcs lcs sedit cost B len-b len-a)
(edits2lcs lcs sedit cost A len-a len-b))))))
;;@args array1 array2 =? p-lim
;;@args array1 array2 =?
;;@1 and @2 are one-dimensional arrays. The procedure @3 is used
;;to compare sequence tokens for equality.
;;
;;The non-negative integer @4, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns a vector of length @code{(diff:edit-length @1 @2)} composed
;;of a shortest sequence of edits transformaing @1 to @2.
;;
;;Each edit is an integer:
;;@table @asis
;;@item @var{k} > 0
;;Inserts @code{(array-ref @1 (+ -1 @var{j}))} into the sequence.
;;@item @var{k} < 0
;;Deletes @code{(array-ref @2 (- -1 @var{k}))} from the sequence.
;;@end table
(define (diff:edits A B =? . p-lim)
(define len-a (car (array-dimensions a)))
(define len-b (car (array-dimensions b)))
(set! p-lim (if (null? p-lim) -1 (car p-lim)))
(let ((edits (if (< len-b len-a)
(diff2edits B len-b A len-a =? p-lim)
(diff2edits A len-a B len-b =? p-lim))))
(and edits (diff:order-edits edits (car (array-dimensions edits))
(if (< len-b len-a) -1 1)))))
;;@args array1 array2 =? p-lim
;;@args array1 array2 =?
;;@1 and @2 are one-dimensional arrays. The procedure @3 is used
;;to compare sequence tokens for equality.
;;
;;The non-negative integer @4, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns the length of the shortest sequence of edits transformaing
;;@1 to @2.
(define (diff:edit-length A B =? . p-lim)
(define M (car (array-dimensions a)))
(define N (car (array-dimensions b)))
(set! p-lim (if (null? p-lim) -1 (car p-lim)))
(if (< N M)
(diff2editlen B N A M =? p-lim)
(diff2editlen A M B N =? p-lim)))
;;@example
;;(diff:longest-common-subsequence "fghiejcklm" "fgehijkpqrlm" eqv?)
;;@result{} "fghijklm"
;;
;;(diff:edit-length "fghiejcklm" "fgehijkpqrlm" eqv?)
;;@result{} 6
;;
;;(diff:edits "fghiejcklm" "fgehijkpqrlm" eqv?)
;;@result{} #As32(3 -5 -7 8 9 10)
;; ; e c h p q r
;;@end example
;;(trace-all "/home/jaffer/slib/differ.scm")(set! *qp-width* 333)(untrace fp:run fp:subarray)