;;;; "differ.scm" O(NP) Sequence Comparison Algorithm.
;;; Copyright (C) 2001, 2002, 2003, 2004, 2007 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@noindent
;;@code{diff:edit-length} implements the algorithm:
;;
;;@ifinfo
;;@example
;;S. Wu, E. Myers, U. Manber, and W. Miller,
;; "An O(NP) Sequence Comparison Algorithm,"
;; Information Processing Letters 35, 6 (1990), 317-323.
;; @url{http://www.cs.arizona.edu/people/gene/PAPERS/np_diff.ps}
;;@end example
;;@end ifinfo
;;@ifset html
;;S. Wu,
;;E. Myers, U. Manber, and W. Miller,
;;
;;"An O(NP) Sequence Comparison Algorithm",
;;Information Processing Letters 35, 6 (1990), 317-323.
;;@end ifset
;;
;;@noindent
;;The values returned by @code{diff:edit-length} can be used to gauge
;;the degree of match between two sequences.
;;
;;@noindent
;;@code{diff:edits} and @code{diff:longest-common-subsequence} combine
;;the algorithm with the divide-and-conquer method outlined in:
;;
;;@ifinfo
;;@example
;;E. Myers and W. Miller,
;; "Optimal alignments in linear space",
;; Computer Application in the Biosciences (CABIOS), 4(1):11-17, 1988.
;; @url{http://www.cs.arizona.edu/people/gene/PAPERS/linear.ps}
;;@end example
;;@end ifinfo
;;@ifset html
;;
;;E. Myers, and W. Miller,
;;
;;"Optimal alignments in linear space",
;;Computer Application in the Biosciences (CABIOS), 4(1):11-17, 1988.
;;@end ifset
;;
;;@noindent
;;If the items being sequenced are text lines, then the computed
;;edit-list is equivalent to the output of the @dfn{diff} utility
;;program. If the items being sequenced are words, then it is like the
;;lesser known @dfn{spiff} program.
(require 'array)
;;; p-lim is half the number of gratuitous edits for strings of given
;;; lengths.
;;; When passed #f CC, fp:compare returns edit-distance if successful;
;;; #f otherwise (p > p-lim). When passed CC, fp:compare returns #f.
(define (fp:compare fp fpoff CC A M B N p-lim)
(define Delta (- N M))
;;(if (negative? Delta) (slib:error 'fp:compare (fp:subarray A 0 M) '> (fp:subarray B 0 N)))
;;(set! compares (+ 1 compares)) ;(print 'fp:compare M N p-lim)
(let loop ((p 0))
(do ((k (- p) (+ 1 k)))
((>= k Delta))
(fp:run fp fpoff k A M B N CC p))
(do ((k (+ Delta p) (+ -1 k)))
((<= k Delta))
(fp:run fp fpoff k A M B N CC p))
(let ((fpval (fp:run fp fpoff Delta A M B N CC p)))
;; At this point, the cost to (fpval-Delta, fpval) is Delta + 2*p
(cond ((and (not CC) (<= N fpval)) (+ Delta (* 2 p)))
((and (not (negative? p-lim)) (>= p p-lim)) #f)
(else (loop (+ 1 p)))))))
;;; Traces runs of matches until they end; then set fp[k]=y.
;;; If CC is supplied, set each CC[y] = min(CC[y], cost) for run.
;;; Returns furthest y reached.
(define (fp:run fp fpoff k A M B N CC p)
(define cost (+ k p p))
(let snloop ((y (max (+ (array-ref fp (+ -1 k fpoff)) 1)
(array-ref fp (+ 1 k fpoff)))))
(define x (- y k))
(and CC (<= y N)
(let ((xcst (- M x)))
(cond ((negative? xcst))
(else (array-set! CC
(min (+ xcst cost) (array-ref CC y))
y)))))
;;(set! tick (+ 1 tick))
(cond ((and (< x M) (< y N)
(eqv? (array-ref A x) (array-ref B y)))
(snloop (+ 1 y)))
(else (array-set! fp y (+ fpoff k))
y))))
;;; Check that only 1 and -1 steps between adjacent CC entries.
;;(define (fp:step-check A M B N CC)
;; (do ((cdx (+ -1 N) (+ -1 cdx)))
;; ((negative? cdx))
;; (case (- (array-ref CC cdx) (array-ref CC (+ 1 cdx)))
;; ((1 -1) #t)
;; (else (cond ((> 30 (car (array-dimensions CC)))
;; (display "A: ") (print A)
;; (display "B: ") (print B)))
;; (slib:warn
;; "CC" (append (list (max 0 (+ -5 cdx)) ': (min (+ 1 N) (+ 5 cdx))
;; 'of)
;; (array-dimensions CC))
;; (fp:subarray CC (max 0 (+ -5 cdx)) (min (+ 1 N) (+ 5 cdx))))))))
;;; Correct cost jumps left by fp:compare [which visits only a few (x,y)].
;;(define (smooth-costs CC N)
;; (do ((cdx (+ -1 N) (+ -1 cdx))) ; smooth from end
;; ((negative? cdx))
;; (array-set! CC (min (array-ref CC cdx) (+ 1 (array-ref CC (+ 1 cdx))))
;; cdx))
;; (do ((cdx 1 (+ 1 cdx))) ; smooth toward end
;; ((> cdx N))
;; (array-set! CC (min (array-ref CC cdx) (+ 1 (array-ref CC (+ -1 cdx))))
;; cdx))
;; CC)
(define (diff:mid-split N RR CC cost)
;; RR is not longer than CC. So do for each element of RR.
(let loop ((cdx (+ 1 (quotient N 2)))
(rdx (quotient N 2)))
;;(if (negative? rdx) (slib:error 'negative? 'rdx))
(cond ((eqv? cost (+ (array-ref CC rdx) (array-ref RR (- N rdx)))) rdx)
((eqv? cost (+ (array-ref CC cdx) (array-ref RR (- N cdx)))) cdx)
(else (loop (+ 1 cdx) (+ -1 rdx))))))
;;; Return 0-based shared array.
;;; Reverse RA if END < START.
(define (fp:subarray RA start end)
(define n-len (abs (- end start)))
(if (< end start)
(make-shared-array RA (lambda (idx) (list (+ -1 (- start idx)))) n-len)
(make-shared-array RA (lambda (idx) (list (+ start idx))) n-len)))
(define (fp:init! fp fpoff fill mindx maxdx)
(define mlim (+ fpoff mindx))
(do ((idx (+ fpoff maxdx) (+ -1 idx)))
((< idx mlim))
(array-set! fp fill idx)))
;;; Split A[start-a..end-a] (shorter array) into smaller and smaller chunks.
;;; EDX is index into EDITS.
;;; EPO is insert/delete polarity (+1 or -1)
(define (diff:divide-and-conquer fp fpoff CCRR A start-a end-a B start-b end-b edits edx epo p-lim)
(define mid-a (quotient (+ start-a end-a) 2))
(define len-b (- end-b start-b))
(define len-a (- end-a start-a))
(let ((tcst (+ p-lim p-lim (- len-b len-a))))
(define CC (fp:subarray CCRR 0 (+ len-b 1)))
(define RR (fp:subarray CCRR (+ len-b 1) (* 2 (+ len-b 1))))
(define M2 (- end-a mid-a))
(define M1 (- mid-a start-a))
(fp:init! CC 0 (+ len-a len-b) 0 len-b)
(fp:init! fp fpoff -1 (- (+ 1 p-lim)) (+ 1 p-lim (- len-b M1)))
(fp:compare fp fpoff CC
(fp:subarray A start-a mid-a) M1
(fp:subarray B start-b end-b) len-b
(min p-lim len-a))
(fp:init! RR 0 (+ len-a len-b) 0 len-b)
(fp:init! fp fpoff -1 (- (+ 1 p-lim)) (+ 1 p-lim (- len-b M2)))
(fp:compare fp fpoff RR
(fp:subarray A end-a mid-a) M2
(fp:subarray B end-b start-b) len-b
(min p-lim len-a))
;;(smooth-costs CC len-b) (smooth-costs RR len-b)
(let ((b-splt (diff:mid-split len-b RR CC tcst)))
(define est-c (array-ref CC b-splt))
(define est-r (array-ref RR (- len-b b-splt)))
;;(display "A: ") (array-for-each display (fp:subarray A start-a mid-a)) (display " + ") (array-for-each display (fp:subarray A mid-a end-a)) (newline)
;;(display "B: ") (array-for-each display (fp:subarray B start-b end-b)) (newline)
;;(print 'cc cc) (print 'rr (fp:subarray RR (+ 1 len-b) 0))
;;(print (make-string (+ 12 (* 2 b-splt)) #\-) '^ (list b-splt))
(check-cost! 'CC est-c
(diff2et fp fpoff CCRR
A start-a mid-a
B start-b (+ start-b b-splt)
edits edx epo
(quotient (- est-c (- b-splt (- mid-a start-a)))
2)))
(check-cost! 'RR est-r
(diff2et fp fpoff CCRR
A mid-a end-a
B (+ start-b b-splt) end-b
edits (+ est-c edx) epo
(quotient (- est-r (- (- len-b b-splt)
(- end-a mid-a)))
2)))
(+ est-c est-r))))
;;; Trim; then diff sub-arrays; either one longer. Returns edit-length
(define (diff2et fp fpoff CCRR A start-a end-a B start-b end-b edits edx epo p-lim)
;; (if (< (- end-a start-a) p-lim) (slib:warn 'diff2et 'len-a (- end-a start-a) 'len-b (- end-b start-b) 'p-lim p-lim))
(do ((bdx (+ -1 end-b) (+ -1 bdx))
(adx (+ -1 end-a) (+ -1 adx)))
((not (and (<= start-b bdx)
(<= start-a adx)
(eqv? (array-ref A adx) (array-ref B bdx))))
(do ((bsx start-b (+ 1 bsx))
(asx start-a (+ 1 asx)))
((not (and (< bsx bdx)
(< asx adx)
(eqv? (array-ref A asx) (array-ref B bsx))))
;;(print 'trim-et (- asx start-a) '+ (- end-a adx))
(let ((delta (- (- bdx bsx) (- adx asx))))
(if (negative? delta)
(diff2ez fp fpoff CCRR B bsx (+ 1 bdx) A asx (+ 1 adx)
edits edx (- epo) (+ delta p-lim))
(diff2ez fp fpoff CCRR A asx (+ 1 adx) B bsx (+ 1 bdx)
edits edx epo p-lim))))
;;(set! tick (+ 1 tick))
))
;;(set! tick (+ 1 tick))
))
;;; Diff sub-arrays, A not longer than B. Returns edit-length
(define (diff2ez fp fpoff CCRR A start-a end-a B start-b end-b edits edx epo p-lim)
(define len-a (- end-a start-a))
(define len-b (- end-b start-b))
;;(if (> len-a len-b) (slib:error 'diff2ez len-a '> len-b))
(cond ((zero? p-lim) ; B inserts only
(if (= len-b len-a)
0 ; A = B; no edits
(let loop ((adx start-a)
(bdx start-b)
(edx edx))
(cond ((>= bdx end-b) (- len-b len-a))
((>= adx end-a)
(do ((idx bdx (+ 1 idx))
(edx edx (+ 1 edx)))
((>= idx end-b) (- len-b len-a))
(array-set! edits (* epo (+ 1 idx)) edx)))
((eqv? (array-ref A adx) (array-ref B bdx))
;;(set! tick (+ 1 tick))
(loop (+ 1 adx) (+ 1 bdx) edx))
(else (array-set! edits (* epo (+ 1 bdx)) edx)
;;(set! tick (+ 1 tick))
(loop adx (+ 1 bdx) (+ 1 edx)))))))
((<= len-a p-lim) ; delete all A; insert all B
;;(if (< len-a p-lim) (slib:error 'diff2ez len-a len-b 'p-lim p-lim))
(do ((idx start-a (+ 1 idx))
(jdx start-b (+ 1 jdx)))
((and (>= idx end-a) (>= jdx end-b)) (+ len-a len-b))
(cond ((< jdx end-b)
(array-set! edits (* epo (+ 1 jdx)) edx)
(set! edx (+ 1 edx))))
(cond ((< idx end-a)
(array-set! edits (* epo (- -1 idx)) edx)
(set! edx (+ 1 edx))))))
(else (diff:divide-and-conquer
fp fpoff CCRR A start-a end-a B start-b end-b
edits edx epo p-lim))))
(define (check-cost! name est cost)
(if (not (eqv? est cost))
(slib:warn name "cost check failed" est '!= cost)))
;;;; Routines interfacing API layer to algorithms.
(define (diff:invert-edits! edits)
(define cost (car (array-dimensions edits)))
(do ((idx (+ -1 cost) (+ -1 idx)))
((negative? idx))
(array-set! edits (- (array-ref edits idx)) idx)))
;;; len-a < len-b
(define (edits2lcs! lcs edits A)
(define cost (car (array-dimensions edits)))
(define len-a (car (array-dimensions A)))
(let loop ((edx 0)
(sdx 0)
(adx 0))
(let ((edit (if (< edx cost) (array-ref edits edx) 0)))
(cond ((>= adx len-a))
((positive? edit)
(loop (+ 1 edx) sdx adx))
((zero? edit)
(array-set! lcs (array-ref A adx) sdx)
(loop edx (+ 1 sdx) (+ 1 adx)))
((>= adx (- -1 edit))
(loop (+ 1 edx) sdx (+ 1 adx)))
(else
(array-set! lcs (array-ref A adx) sdx)
(loop edx (+ 1 sdx) (+ 1 adx)))))))
;; A not longer than B (M <= N)
(define (diff2edits! edits fp CCRR A B)
(define N (car (array-dimensions B)))
(define M (car (array-dimensions A)))
(define est (car (array-dimensions edits)))
(let ((p-lim (quotient (- est (- N M)) 2)))
(check-cost! 'diff2edits!
est
(diff2et fp (+ 1 p-lim)
CCRR A 0 M B 0 N edits 0 1 p-lim))))
;; A not longer than B (M <= N)
(define (diff2editlen fp A B p-lim)
(define N (car (array-dimensions B)))
(define M (car (array-dimensions A)))
(let ((maxdx (if (negative? p-lim) (+ 1 N) (+ 1 p-lim (- N M))))
(mindx (if (negative? p-lim) (- (+ 1 M)) (- (+ 1 p-lim)))))
(fp:init! fp (- mindx) -1 mindx maxdx)
(fp:compare fp (- mindx) #f A M B N p-lim)))
;;;; API
;;@args array1 array2 p-lim
;;@args array1 array2
;;@1 and @2 are one-dimensional arrays.
;;
;;The non-negative integer @3, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns a one-dimensional array of length @code{(quotient (- (+
;;len1 len2) (diff:edit-length @1 @2)) 2)} holding the longest sequence
;;common to both @var{array}s.
(define (diff:longest-common-subsequence A B . p-lim)
(define M (car (array-dimensions A)))
(define N (car (array-dimensions B)))
(set! p-lim (if (null? p-lim) -1 (car p-lim)))
(let ((edits (if (< N M)
(diff:edits B A p-lim)
(diff:edits A B p-lim))))
(and edits
(let* ((cost (car (array-dimensions edits)))
(lcs (make-array A (/ (- (+ N M) cost) 2))))
(edits2lcs! lcs edits (if (< N M) B A))
lcs))))
;;@args array1 array2 p-lim
;;@args array1 array2
;;@1 and @2 are one-dimensional arrays.
;;
;;The non-negative integer @3, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns a vector of length @code{(diff:edit-length @1 @2)} composed
;;of a shortest sequence of edits transformaing @1 to @2.
;;
;;Each edit is an integer:
;;@table @asis
;;@item @var{k} > 0
;;Inserts @code{(array-ref @1 (+ -1 @var{j}))} into the sequence.
;;@item @var{k} < 0
;;Deletes @code{(array-ref @2 (- -1 @var{k}))} from the sequence.
;;@end table
(define (diff:edits A B . p-lim)
(define M (car (array-dimensions A)))
(define N (car (array-dimensions B)))
(define est (diff:edit-length A B (if (null? p-lim) -1 (car p-lim))))
(and est
(let ((CCRR (make-array (A:fixZ32b) (* 2 (+ (max M N) 1))))
(edits (make-array (A:fixZ32b) est)))
(define fp (make-array (A:fixZ32b)
(+ (max (- N (quotient M 2))
(- M (quotient N 2)))
(- est (abs (- N M))) ; 2 * p-lim
3)))
(cond ((< N M)
(diff2edits! edits fp CCRR B A)
(diff:invert-edits! edits))
(else
(diff2edits! edits fp CCRR A B)))
;;(diff:order-edits! edits est)
edits)))
;;@args array1 array2 p-lim
;;@args array1 array2
;;@1 and @2 are one-dimensional arrays.
;;
;;The non-negative integer @3, if provided, is maximum number of
;;deletions of the shorter sequence to allow. @0 will return @code{#f}
;;if more deletions would be necessary.
;;
;;@0 returns the length of the shortest sequence of edits transformaing
;;@1 to @2.
(define (diff:edit-length A B . p-lim)
(define M (car (array-dimensions A)))
(define N (car (array-dimensions B)))
(set! p-lim (if (null? p-lim) -1 (car p-lim)))
(let ((fp (make-array (A:fixZ32b) (if (negative? p-lim)
(+ 3 M N)
(+ 3 (abs (- N M)) p-lim p-lim)))))
(if (< N M)
(diff2editlen fp B A p-lim)
(diff2editlen fp A B p-lim))))
;;@example
;;(diff:longest-common-subsequence "fghiejcklm" "fgehijkpqrlm")
;;@result{} "fghijklm"
;;
;;(diff:edit-length "fghiejcklm" "fgehijkpqrlm")
;;@result{} 6
;;
;;(diff:edits "fghiejcklm" "fgehijkpqrlm")
;;@result{} #A:fixZ32b(3 -5 -7 8 9 10)
;; ; e c h p q r
;;@end example
;;(trace-all "/home/jaffer/slib/differ.scm")(set! *qp-width* 999)(untrace fp:run) ; fp:subarray