;;;"cring.scm" Extend Scheme numerics to any commutative ring. ;Copyright (C) 1997 Aubrey Jaffer ; ;Permission to copy this software, to redistribute it, and to use it ;for any purpose is granted, subject to the following restrictions and ;understandings. ; ;1. Any copy made of this software must include this copyright notice ;in full. ; ;2. I have made no warrantee or representation that the operation of ;this software will be error-free, and I am under no obligation to ;provide any services, by way of maintenance, update, or otherwise. ; ;3. In conjunction with products arising from the use of this ;material, there shall be no use of my name in any advertising, ;promotional, or sales literature without prior written consent in ;each case. (require 'common-list-functions) (require 'relational-database) (require 'database-utilities) (require 'sort) (define (symbol-alpha? sym) (char-alphabetic? (string-ref (symbol->string sym) 0))) (define (expression-< x y) (cond ((and (number? x) (number? y)) (> x y)) ;want negatives last ((number? x) #t) ((number? y) #f) ((and (symbol? x) (symbol? y)) (cond ((eqv? (symbol-alpha? x) (symbol-alpha? y)) (stringstring x) (symbol->string y))) (else (symbol-alpha? x)))) ((symbol? x) #t) ((symbol? y) #f) ((null? x) #t) ((null? y) #f) ((expression-< (car x) (car y)) #t) ((expression-< (car y) (car x)) #f) (else (expression-< (cdr x) (cdr y))))) (define (expression-sort seq) (sort! seq expression-<)) (define cring:db (create-database #f 'alist-table)) (define-tables cring:db `(operation ((op symbol) (sub-op1 symbol) (sub-op2 symbol)) ((reduction expression)) (;; This is the distributive rule (* over +) (* + identity ,(lambda (exp1 exp2) ;;(print 'distributing '* '+ exp1 exp2 '==>) (apply + (map (lambda (trm) (* trm exp2)) (cdr exp1))))) (* - identity ,(lambda (exp1 exp2) ;;(print 'distributing '* '- exp1 exp2 '==>) (apply - (map (lambda (trm) (* trm exp2)) (cdr exp1))))) (/ + identity ,(lambda (exp1 exp2) ;;(print 'distributing '/ '+ exp1 exp2 '==>) (apply + (map (lambda (trm) (/ trm exp2)) (cdr exp1))))) (/ - identity ,(lambda (exp1 exp2) ;;(print 'distributing '/ '- exp1 exp2 '==>) (apply - (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))))) (define cring:op-tab ((cring:db 'open-table) 'operation #t)) (define cring:rule (cring:op-tab 'get 'reduction)) (define cring:defrule (cring:op-tab 'row:update)) (define (cring:define-rule . args) (cring:defrule args)) (define number* *) (define number+ +) (define number- -) (define number/ /) (define number^ integer-expt) (define is-term-op? (lambda (term op) (and (pair? term) (eq? op (car term))))) ;;(define (sign x) (if (positive? x) 1 (if (negative? x) -1 0))) (define number0? zero?) (define (zero? x) (and (number? x) (number0? x))) (define (make-rat n d) (let* ((g (if (negative? d) (number- (gcd n d)) (gcd n d))) (n/g (quotient n g)) (d/g (quotient d g))) (case d/g ((1) n/g) (else (case n/g ((0) 0) ((1) (list '/ d/g)) (else (list '/ n/g d/g))))))) (define (rat-number? r) (and (list? r) (<= 2 (length r) 3) (eq? '/ (car r)) (every number? (cdr r)))) (define (rat-numerator r) (cond ((number? r) r) ((rat-number? r) (case (length r) ((2) 1) ((3) (cadr r)))) (else (slib:error 'rat-numerator "of non-rat" r)))) (define (rat-denominator r) (cond ((number? r) 1) ((rat-number? r) (case (length r) ((2) (cadr r)) ((3) (caddr r)))) (else (slib:error 'rat-denominator "of non-rat" r)))) ;; To convert to CR internal form, NUMBER-op all the `numbers' in the ;; argument list and remove them from the argument list. Collect the ;; remaining arguments into equivalence classes, keeping track of the ;; number of arguments in each class. The returned list is thus: ;; ( ( . ) ...) ;;; Converts * argument list to CR internal form (define (cr*-args->fcts args) ;;(print (cons 'cr*-args->fcts args) '==>) (let loop ((args args) (pow 1) (nums 1) (denoms 1) (arg.exps '())) ;;(print (list 'loop args pow nums denoms arg.exps) '==>) (cond ((null? args) (cons (make-rat nums denoms) arg.exps)) ((number? (car args)) (let ((num^pow (number^ (car args) (abs pow)))) (if (negative? pow) (loop (cdr args) pow nums (number* num^pow denoms) arg.exps) (loop (cdr args) pow (number* num^pow nums) denoms arg.exps)))) ((rat-number? (car args)) (let ((num^pow (number^ (rat-numerator (car args)) (abs pow))) (den^pow (number^ (rat-denominator (car args)) (abs pow)))) (if (negative? pow) (loop (cdr args) pow (number* den^pow nums) (number* num^pow denoms) arg.exps) (loop (cdr args) pow (number* num^pow nums) (number* den^pow denoms) arg.exps)))) ;; Associative Rule ((is-term-op? (car args) '*) (loop (append (cdar args) (cdr args)) pow nums denoms arg.exps)) ;; Do singlet - ((and (is-term-op? (car args) '-) (= 2 (length (car args)))) ;;(print 'got-here (car args)) (set! arg.exps (loop (cdar args) pow (number- nums) denoms arg.exps)) (loop (cdr args) pow (rat-numerator (car arg.exps)) (rat-denominator (car arg.exps)) (cdr arg.exps))) ((and (is-term-op? (car args) '/) (= 2 (length (car args)))) ;; Do singlet / ;;(print 'got-here=cr+ (car args)) (set! arg.exps (loop (cdar args) (number- pow) nums denoms arg.exps)) (loop (cdr args) pow (rat-numerator (car arg.exps)) (rat-denominator (car arg.exps)) (cdr arg.exps))) ((is-term-op? (car args) '/) ;; Do multi-arg / ;;(print 'doing '/ (cddar args) (number- pow)) (set! arg.exps (loop (cddar args) (number- pow) nums denoms arg.exps)) ;;(print 'finishing '/ (cons (cadar args) (cdr args)) pow) (loop (cons (cadar args) (cdr args)) pow (rat-numerator (car arg.exps)) (rat-denominator (car arg.exps)) (cdr arg.exps))) ;; Pull out numeric exponents as powers ((and (is-term-op? (car args) '^) (= 3 (length (car args))) (number? (caddar args))) (set! arg.exps (loop (list (cadar args)) (number* pow (caddar args)) nums denoms arg.exps)) (loop (cdr args) pow (rat-numerator (car arg.exps)) (rat-denominator (car arg.exps)) (cdr arg.exps))) ;; combine with same terms ((assoc (car args) arg.exps) => (lambda (pair) (set-cdr! pair (number+ pow (cdr pair))) (loop (cdr args) pow nums denoms arg.exps))) ;; Add new term to arg.exps (else (loop (cdr args) pow nums denoms (cons (cons (car args) pow) arg.exps)))))) ;;; Converts + argument list to CR internal form (define (cr+-args->trms args) (let loop ((args args) (cof 1) (numbers 0) (arg.exps '())) (cond ((null? args) (cons numbers arg.exps)) ((number? (car args)) (loop (cdr args) cof (number+ (number* (car args) cof) numbers) arg.exps)) ;; Associative Rule ((is-term-op? (car args) '+) (loop (append (cdar args) (cdr args)) cof numbers arg.exps)) ;; Idempotent singlet * ((and (is-term-op? (car args) '*) (= 2 (length (car args)))) (loop (cons (cadar args) (cdr args)) cof numbers arg.exps)) ((and (is-term-op? (car args) '-) (= 2 (length (car args)))) ;; Do singlet - (set! arg.exps (loop (cdar args) (number- cof) numbers arg.exps)) (loop (cdr args) cof (car arg.exps) (cdr arg.exps))) ;; Pull out numeric factors as coefficients ((and (is-term-op? (car args) '*) (some number? (cdar args))) ;;(print 'got-here (car args) '=> (cons '* (remove-if number? (cdar args)))) (set! arg.exps (loop (list (cons '* (remove-if number? (cdar args)))) (apply number* cof (remove-if-not number? (cdar args))) numbers arg.exps)) (loop (cdr args) cof (car arg.exps) (cdr arg.exps))) ((is-term-op? (car args) '-) ;; Do multi-arg - (set! arg.exps (loop (cddar args) (number- cof) numbers arg.exps)) (loop (cons (cadar args) (cdr args)) cof (car arg.exps) (cdr arg.exps))) ;; combine with same terms ((assoc (car args) arg.exps) => (lambda (pair) (set-cdr! pair (number+ cof (cdr pair))) (loop (cdr args) cof numbers arg.exps))) ;; Add new term to arg.exps (else (loop (cdr args) cof numbers (cons (cons (car args) cof) arg.exps)))))) ;;; Converts + or * internal form to Scheme expression (define (cr-terms->form op ident inv-op higher-op res.cofs) (define (negative-cof? fct.cof) (negative? (cdr fct.cof))) (define (finish exprs) (if (null? exprs) ident (if (null? (cdr exprs)) (car exprs) (cons op exprs)))) (define (do-terms sign fct.cofs) (expression-sort (map (lambda (fct.cof) (define cof (number* sign (cdr fct.cof))) (cond ((eqv? 1 cof) (car fct.cof)) ((number? (car fct.cof)) (number* cof (car fct.cof))) ((is-term-op? (car fct.cof) higher-op) (if (eq? higher-op '^) (list '^ (cadar fct.cof) (* cof (caddar fct.cof))) (cons higher-op (cons cof (cdar fct.cof))))) ((eqv? -1 cof) (list inv-op (car fct.cof))) (else (list higher-op (car fct.cof) cof)))) fct.cofs))) (let* ((all.cofs (remove-if (lambda (fct.cof) (or (zero? (cdr fct.cof)) (eqv? ident (car fct.cof)))) res.cofs)) (cofs (map cdr all.cofs)) (some-positive? (some positive? cofs))) ;;(print op 'positive? some-positive? 'negative? (some negative? cofs) all.cofs) (cond ((and some-positive? (some negative? cofs)) (append (list inv-op (finish (do-terms 1 (remove-if negative-cof? all.cofs)))) (do-terms -1 (remove-if-not negative-cof? all.cofs)))) (some-positive? (finish (do-terms 1 all.cofs))) ((not (some negative? cofs)) ident) (else (list inv-op (finish (do-terms -1 all.cofs))))))) (define (* . args) (cond ((null? args) 1) ;;((null? (cdr args)) (car args)) (else (let ((in (cr*-args->fcts args))) (cond ((zero? (car in)) 0) (else (if (null? (cdr in)) (set-cdr! in (list (cons 1 1)))) (let* ((num #f) (ans (cr-terms->form '* 1 '/ '^ (apply (lambda (numeric red.cofs res.cofs) (append (cond ((number? numeric) (set! num numeric) (list (cons (abs numeric) 1))) (else (set! num (rat-numerator numeric)) (list (cons (abs num) 1) (cons (rat-denominator numeric) -1)))) red.cofs res.cofs)) (cr1 '* number* '^ '/ (car in) (cdr in)))))) (if (negative? num) (list '- ans) ans)))))))) (define (+ . args) (cond ((null? args) 0) ;;((null? (cdr args)) (car args)) (else (let ((in (cr+-args->trms args))) (if (null? (cdr in)) (car in) (cr-terms->form '+ 0 '- '* (apply (lambda (numeric red.cofs res.cofs) (append (list (if (and (number? numeric) (negative? numeric)) (cons (abs numeric) -1) (cons numeric 1))) red.cofs res.cofs)) (cr1 '+ number+ '* '- (car in) (cdr in))))))))) (define (- arg1 . args) (if (null? args) (if (number? arg1) (number- arg1) (* -1 arg1) ;(list '- arg1) ) (+ arg1 (* -1 (apply + args))))) ;;(print `(/ ,arg1 ,@args) '=> ) (define (/ arg1 . args) (if (null? args) (^ arg1 -1) (* arg1 (^ (apply * args) -1)))) (define (^ arg1 arg2) (cond ((and (number? arg2) (integer? arg2)) (* (list '^ arg1 arg2))) (else (list '^ arg1 arg2)))) ;; TRY-EACH-PAIR-ONCE algorithm. I think this does the minimum ;; number of rule lookups given no information about how to sort ;; terms. ;; Pick equivalence classes one at a time and move them into the ;; result set of equivalence classes by searching for rules to ;; multiply an element of the chosen class by itself (if multiple) and ;; the element of each class already in the result group. Each ;; (multiplicative) term resulting from rule application would be put ;; in the result class, if that class exists; or put in an argument ;; class if not. (define (cr1 op number-op hop inv-op numeric in) (define red.pows '()) (define res.pows '()) (let loop.arg.pow.s ((arg (caar in)) (pow (cdar in)) (arg.pows (cdr in))) (define (arg-loop arg.pows) (if (null? arg.pows) (list numeric red.pows res.pows) (loop.arg.pow.s (caar arg.pows) (cdar arg.pows) (cdr arg.pows)))) (define (cring:apply-rule->terms exp1 exp2) ;;(display op) (let ((ans (cring:apply-rule op exp1 exp2))) (cond ((not ans) #f) ((number? ans) (list ans)) (else (list (cons ans 1)))))) (define (cring:apply-inv-rule->terms exp1 exp2) ;;(display inv-op) (let ((ans (cring:apply-rule inv-op exp1 exp2))) (cond ((not ans) #f) ((number? ans) (list ans)) (else (list (cons ans 1)))))) (define (merge-res tmp.pows multiplicity) (cond ((null? tmp.pows)) ((number? (car tmp.pows)) (do ((m (number+ -1 (abs multiplicity)) (number+ -1 m)) (n numeric (number-op n (abs (car tmp.pows))))) ((negative? m) (set! numeric n))) (merge-res (cdr tmp.pows) multiplicity)) ((or (assoc (car tmp.pows) res.pows) (assoc (car tmp.pows) arg.pows)) => (lambda (pair) (set-cdr! pair (number+ pow (number-op multiplicity (cdar tmp.pows)))) (merge-res (cdr tmp.pows) multiplicity))) ((assoc (car tmp.pows) red.pows) => (lambda (pair) (set! arg.pows (cons (cons (caar tmp.pows) (number+ (cdr pair) (number* multiplicity (cdar tmp.pows)))) arg.pows)) (set-cdr! pair 0) (merge-res (cdr tmp.pows) multiplicity))) (else (set! arg.pows (cons (cons (caar tmp.pows) (number* multiplicity (cdar tmp.pows))) arg.pows)) (merge-res (cdr tmp.pows) multiplicity)))) (define (try-fct.pow fct.pow) ;;(print 'try-fct.pow fct.pow op 'arg arg 'pow pow) (cond ((or (zero? (cdr fct.pow)) (number? (car fct.pow))) #f) ((not (and (number? pow) (number? (cdr fct.pow)) (integer? pow) ;(integer? (cdr fct.pow)) )) #f) ;;((zero? pow) (slib:error "Don't try exp-0 terms") #f) ;;((or (number? arg) (number? (car fct.pow))) ;; (slib:error 'found-number arg fct.pow) #f) ((and (positive? pow) (positive? (cdr fct.pow)) (or (cring:apply-rule->terms arg (car fct.pow)) (cring:apply-rule->terms (car fct.pow) arg))) => (lambda (terms) ;;(print op op terms) (let ((multiplicity (min pow (cdr fct.pow)))) (set-cdr! fct.pow (number- (cdr fct.pow) multiplicity)) (set! pow (number- pow multiplicity)) (merge-res terms multiplicity)))) ((and (negative? pow) (negative? (cdr fct.pow)) (or (cring:apply-rule->terms arg (car fct.pow)) (cring:apply-rule->terms (car fct.pow) arg))) => (lambda (terms) ;;(print inv-op inv-op terms) (let ((multiplicity (max pow (cdr fct.pow)))) (set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity)) (set! pow (number+ pow multiplicity)) (merge-res terms multiplicity)))) ((and (positive? pow) (negative? (cdr fct.pow)) (cring:apply-inv-rule->terms arg (car fct.pow))) => (lambda (terms) ;;(print op inv-op terms) (let ((multiplicity (min pow (number- (cdr fct.pow))))) (set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity)) (set! pow (number- pow multiplicity)) (merge-res terms multiplicity)))) ((and (negative? pow) (positive? (cdr fct.pow)) (cring:apply-inv-rule->terms (car fct.pow) arg)) => (lambda (terms) ;;(print inv-op op terms) (let ((multiplicity (max (number- pow) (cdr fct.pow)))) (set-cdr! fct.pow (number- (cdr fct.pow) multiplicity)) (set! pow (number+ pow multiplicity)) (merge-res terms multiplicity)))) (else #f))) ;;(print op numeric 'arg arg 'pow pow 'arg.pows arg.pows 'red.pows red.pows 'res.pows res.pows) ;;(trace arg-loop cring:apply-rule->terms merge-res try-fct.pow) (set! *qp-width* 333) (cond ((or (zero? pow) (number? arg)) (arg-loop arg.pows)) ((assoc arg res.pows) => (lambda (pair) (set-cdr! pair (number+ pow (cdr pair))) (arg-loop arg.pows))) ((and (> (abs pow) 1) (cring:apply-rule->terms arg arg)) => (lambda (terms) (merge-res terms (quotient pow 2)) (if (odd? pow) (loop.arg.pow.s arg 1 arg.pows) (arg-loop arg.pows)))) ((or (some try-fct.pow res.pows) (some try-fct.pow arg.pows)) (loop.arg.pow.s arg pow arg.pows)) (else (set! res.pows (cons (cons arg pow) res.pows)) (arg-loop arg.pows))))) (define (cring:try-rule op sop1 sop2 exp1 exp2) (let ((rule (cring:rule op sop1 sop2))) (and rule (rule exp1 exp2)))) (define (cring:apply-rule op exp1 exp2) (and (pair? exp1) (or (and (pair? exp2) (cring:try-rule op (car exp1) (car exp2) exp1 exp2)) (cring:try-rule op (car exp1) 'identity exp1 exp2)))) ;;(begin (trace cr-terms->form) (set! *qp-width* 333))