Dat - Distributed Dataset Synchronization And Versioning

Maxwell Ogden, Karissa McKelvey, Mathias Buus Madsen, Code for Science

May 2017

Abstract

Dat is a protocol designed for syncing folders of data,
even if they are large or changing constantly. Dat uses
a cryptographically secure register of changes to prove
that the requested data version is distributed. A byte
range of any file’s version can be efficiently streamed
from a Dat repository over a network connection.
Consumers can choose to fully or partially replicate
the contents of a remote Dat repository, and can also
subscribe to live changes. To ensure writer and reader
privacy, Dat uses public key cryptography to encrypt
network traffic. A group of Dat clients can connect to
each other to form a public or private decentralized
network to exchange data between each other. A
reference implementation is provided in JavaScript.

1. Background

Many datasets are shared online today using HT'TP
and FTP, which lack built in support for version
control or content addressing of data. This results in
link rot and content drift as files are moved, updated
or deleted, leading to an alarming rate of disappearing
data references in areas such as published scientific
literature.

Cloud storage services like S3 ensure availability of
data, but they have a centralized hub-and-spoke net-
working model and are therefore limited by their band-
width, meaning popular files can become very expen-
sive to share. Services like Dropbox and Google Drive
provide version control and synchronization on top of
cloud storage services which fixes many issues with
broken links but rely on proprietary code and services

requiring users to store their data on centralized cloud
infrastructure which has implications on cost, transfer
speeds, vendor lock-in and user privacy.

Distributed file sharing tools can become faster as
files become more popular, removing the bandwidth
bottleneck and making file distribution cheaper. They
also use link resolution and discovery systems which
can prevent broken links meaning if the original source
goes offline other backup sources can be automatically
discovered. However these file sharing tools today are
not supported by Web browsers, do not have good
privacy guarantees, and do not provide a mechanism
for updating files without redistributing a new dataset
which could mean entirely redownloading data you
already have.

2. Dat

Dat is a dataset synchronization protocol that does
not assume a dataset is static or that the entire dataset
will be downloaded. The main reference implementa-
tion is available from npm as npm install dat -g.

The protocol is agnostic to the underlying transport
e.g. you could implement Dat over carrier pigeon.
Data is stored in a format called SLEEP (Ogden and
Buus 2017), described in it’s own paper. The key
properties of the Dat design are explained in this
section.

e 2.1 Content Integrity - Data and publisher
integrity is verified through use of signed hashes
of the content.

e 2.2 Decentralized Mirroring - Users sharing
the same Dat automatically discover each other

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115253
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115253

and exchange data in a swarm.

e 2.3 Network Privacy - Dat provides certain
privacy guarantees including end-to-end encryp-
tion.

e 2.4 Incremental Versioning - Datasets can be
efficiently synced, even in real time, to other
peers.

¢ 2.5 Random Access - Huge file hierarchies can
be efficiently traversed remotely.

2.1 Content Integrity

Content integrity means being able to verify the data
you received is the exact same version of the data
that you expected. This is important in a distributed
system as this mechanism will catch incorrect data
sent by bad peers. It also has implications for repro-
ducibility as it lets you refer to a specific version of a
dataset.

Link rot, when links online stop resolving, and content
drift, when data changes but the link to the data
remains the same, are two common issues in data
analysis. For example, one day a file called data.zip
might change, but a typical HTTP link to the file does
not include a hash of the content, or provide a way to
get updated metadata, so clients that only have the
HTTP link have no way to check if the file changed
without downloading the entire file again. Referring
to a file by the hash of its content is called content
addressability, and lets users not only verify that the
data they receive is the version of the data they want,
but also lets people cite specific versions of the data
by referring to a specific hash.

Dat uses BLAKE2b (Aumasson et al. 2013) crypto-
graphically secure hashes to address content. Hashes
are arranged in a Merkle tree (Mykletun, Narasimha,
and Tsudik 2003), a tree where each non-leaf node is
the hash of all child nodes. Leaf nodes contain pieces
of the dataset. Due to the properties of secure cryp-
tographic hashes the top hash can only be produced
if all data below it matches exactly. If two trees have
matching top hashes then you know that all other
nodes in the tree must match as well, and you can
conclude that your dataset is synchronized. Trees are

chosen as the primary data structure in Dat as they
have a number of properties that allow for efficient
access to subsets of the metadata, which allows Dat
to work efficiently over a network connection.

Dat Links

Dat links are Ed25519 (Bernstein et al. 2012) public
keys which have a length of 32 bytes (64 characters
when Hex encoded). You can represent your Dat link
in the following ways and Dat clients will be able to
understand them:

e The standalone public key:
8e1c7189b1b2dbb5c4ec2693787884771201da9. ..

o Using the dat:// protocol:
dat://8elc7189b1b2dbb5c4ec2693787884771. ..

e As part of an HTTP URL:
https://datproject.org/8elc7189b1b2dbb5. . .

All messages in the Dat protocol are encrypted and
signed using the public key during transport. This
means that unless you know the public key (e.g. unless
the Dat link was shared with you) then you will not
be able to discover or communicate with any member
of the swarm for that Dat. Anyone with the public
key can verify that messages (such as entries in a Dat
Stream) were created by a holder of the private key.

Every Dat repository has a corresponding private key
which is kept in your home folder and never shared.
Dat never exposes either the public or private key
over the network. During the discovery phase the
BLAKE2D hash of the public key is used as the discov-
ery key. This means that the original key is impossible
to discover (unless it was shared publicly through a
separate channel) since only the hash of the key is
exposed publicly.

Dat does not provide an authentication mechanism
at this time. Instead it provides a capability system.
Anyone with the Dat link is currently considered able
to discover and access data. Do not share your Dat
links publicly if you do not want them to be accessed.

Hypercore and Hyperdrive

The Dat storage, content integrity, and networking
protocols are implemented in a module called Hy-
percore. Hypercore is agnostic to the format of the
input data, it operates on any stream of binary data.
For the Dat use case of synchronizing datasets we
use a file system module on top of Hypercore called
Hyperdrive.

Dat has a layered abstraction so that users can use
Hypercore directly to have full control over how they
model their data. Hyperdrive works well when your
data can be represented as files on a filesystem, which
is the main use case with Dat.

Hypercore Registers

Hypercore Registers are the core mechanism used in
Dat. They are binary append-only streams whose
contents are cryptographically hashed and signed and
therefore can be verified by anyone with access to the
public key of the writer. They are an implementation
of the concept known as a register, a digital ledger
you can trust.

Dat uses two registers, content and metadata. The
content register contains the files in your repository
and metadata contains the metadata about the files
including name, size, last modified time, etc. Dat
replicates them both when synchronizing with another
peer.

When files are added to Dat, each file gets split up
into some number of chunks, and the chunks are then
arranged into a Merkle tree, which is used later for
version control and replication processes.

2.2 Decentralized Mirroring

Dat is a peer to peer protocol designed to exchange
pieces of a dataset amongst a swarm of peers. As
soon as a peer acquires their first piece of data in the
dataset they can choose to become a partial mirror
for the dataset. If someone else contacts them and

needs the piece they have, they can choose to share
it. This can happen simultaneously while the peer is
still downloading the pieces they want from others.

Source Discovery

An important aspect of mirroring is source discov-
ery, the techniques that peers use to find each other.
Source discovery means finding the IP and port of
data sources online that have a copy of that data you
are looking for. You can then connect to them and
begin exchanging data. By using source discovery
techniques Dat is able to create a network where data
can be discovered even if the original data source
disappears.

Source discovery can happen over many kinds of net-
works, as long as you can model the following actions:

e join(key, [port]) - Begin performing regular
lookups on an interval for key. Specify port if
you want to announce that you share key as well.

e leave(key, [port]) - Stop looking for key.
Specify port to stop announcing that you share
key as well.

e foundpeer(key, ip, port) - Called when a
peer is found by a lookup.

In the Dat implementation we implement the above
actions on top of three types of discovery networks:

¢ DNS name servers - An Internet standard mech-
anism for resolving keys to addresses

o Multicast DNS - Useful for discovering peers on
local networks

¢ Kademlia Mainline Distributed Hash Table - Less
central points of failure, increases probability of
Dat working even if DNS servers are unreachable

Additional discovery networks can be implemented as
needed. We chose the above three as a starting point
to have a complementary mix of strategies to increase
the probability of source discovery. Additionally you
can specify a Dat via HTTPS link, which runs the
Dat protocol in “single-source” mode, meaning the
above discovery networks are not used, and instead
only that one HTTPS server is used as the only peer.

https://npmjs.org/hypercore
https://npmjs.org/hypercore
https://npmjs.org/hyperdrive

Peer Connections

After the discovery phase, Dat should have a list of
potential data sources to try and contact. Dat uses
either TCP, HTTP or UTP (Rossi et al. 2010). UTP
uses LEDBAT which is designed to not take up all
available bandwidth on a network (e.g. so that other
people sharing wifi can still use the Internet), and
is still based on UDP so works with NAT traversal
techniques like UDP hole punching. HTTP is sup-
ported for compatibility with static file servers and
web browser clients. Note that these are the protocols
we support in the reference Dat implementation, but
the Dat protocol itself is transport agnostic.

If an HTTP source is specified Dat will prefer that
one over other sources. Otherwise when Dat gets the
IP and port for a potential TCP or UTP source it
tries to connect using both protocols. If one connects
first, Dat aborts the other one. If none connect, Dat
will try again until it decides that source is offline or
unavailable and then stops trying to connect to them.
Sources Dat is able to connect to go into a list of known
good sources, so that if/when the Internet connection
goes down Dat can use that list to reconnect to known
good sources again quickly.

If Dat gets a lot of potential sources it picks a handful
at random to try and connect to and keeps the rest
around as additional sources to use later in case it
decides it needs more sources.

Once a duplex binary connection to a remote source
is open Dat then layers on the Hypercore protocol,
a message-based replication protocol that allows two
peers to communicate over a stateless channel to re-
quest and exchange data. You open separate replica-
tion channels with many peers at once which allows
clients to parallelize data requests across the entire
pool of peers they have established connections with.

2.3 Network Privacy

On the Web today, with SSL, there is a guarantee
that the traffic between your computer and the server
is private. As long as you trust the server to not leak

your logs, attackers who intercept your network traffic
will not be able to read the HTTP traffic exchanged
between you and the server. This is a fairly straight-
forward model as clients only have to trust a single
server for some domain.

There is an inherent tradeoff in peer to peer systems
of source discovery vs. user privacy. The more sources
you contact and ask for some data, the more sources
you trust to keep what you asked for private. Our
goal is to have Dat be configurable in respect to this
tradeoff to allow application developers to meet their
own privacy guidelines.

It is up to client programs to make design decisions
around which discovery networks they trust. For
example if a Dat client decides to use the BitTorrent
DHT to discover peers, and they are searching for a
publicly shared Dat key (e.g. a key cited publicly in a
published scientific paper) with known contents, then
because of the privacy design of the BitTorrent DHT
it becomes public knowledge what key that client is
searching for.

A client could choose to only use discovery networks
with certain privacy guarantees. For example a client
could only connect to an approved list of sources that
they trust, similar to SSL. As long as they trust each
source, the encryption built into the Dat network
protocol will prevent the Dat key they are looking for
from being leaked.

2.4 Incremental Versioning

Given a stream of binary data, Dat splits the stream
into chunks, hashes each chunk, and arranges the
hashes in a specific type of Merkle tree that allows
for certain replication properties.

Dat is also able to fully or partially synchronize
streams in a distributed setting even if the stream is
being appended to. This is accomplished by using
the messaging protocol to traverse the Merkle tree
of remote sources and fetch a strategic set of nodes.
Due to the low-level, message-oriented design of the
replication protocol, different node traversal strategies
can be implemented.

https://en.wikipedia.org/wiki/Micro_Transport_Protocol

There are two types of versioning performed automat-
ically by Dat. Metadata is stored in a folder called
.dat in the root folder of a repository, and data is
stored as normal files in the root folder.

Metadata Versioning

Dat tries as much as possible to act as a one-to-one
mirror of the state of a folder and all its contents.
When importing files, Dat uses a sorted, depth-first
recursion to list all the files in the tree. For each file it
finds, it grabs the filesystem metadata (filename, Stat
object, etc) and checks if there is already an entry
for this filename with this exact metadata already
represented in the Dat repository metadata. If the
file with this metadata matches exactly the newest
version of the file metadata stored in Dat, then this
file will be skipped (no change).

If the metadata differs from the current existing one
(or there are no entries for this filename at all in
the history), then this new metadata entry will be
appended as the new ‘latest’ version for this file in
the append-only SLEEP metadata content register
(described below).

Content Versioning

In addition to storing a historical record of filesystem
metadata, the content of the files themselves are also
capable of being stored in a version controlled manner.
The default storage system used in Dat stores the files
as files. This has the advantage of being very straight-
forward for users to understand, but the downside of
not storing old versions of content by default.

In contrast to other version control systems like Git,
Dat by default only stores the current set of checked
out files on disk in the repository folder, not old
versions. It does store all previous metadata for old
versions in .dat. Git for example stores all previous
content versions and all previous metadata versions
in the .git folder. Because Dat is designed for larger
datasets, if it stored all previous file versions in .dat,
then the .dat folder could easily fill up the users

hard drive inadvertently. Therefore Dat has multiple
storage modes based on usage.

Hypercore registers include an optional data file
that stores all chunks of data. In Dat, only the
metadata.data file is used, but the content.data
file is not used. The default behavior is to store the
current files only as normal files. If you want to run
an ‘archival’ node that keeps all previous versions,
you can configure Dat to use the content.data file
instead. For example, on a shared server with lots of
storage you probably want to store all versions. How-
ever on a workstation machine that is only accessing
a subset of one version, the default mode of storing
all metadata plus the current set of downloaded files
is acceptable, because you know the server has the
full history.

Merkle Trees

Registers in Dat use a specific method of encoding a
Merkle tree where hashes are positioned by a scheme
called binary in-order interval numbering or just “bin”
numbering. This is just a specific, deterministic way
of laying out the nodes in a tree. For example a tree
with 7 nodes will always be arranged like this:

In Dat, the hashes of the chunks of files are always
even numbers, at the wide end of the tree. So the
above tree had four original values that become the
even numbers:

chunkO -> 0
chunkl -> 2
chunk2 -> 4
chunk3 -> 6

In the resulting Merkle tree, the even and odd nodes
store different information:

o Evens - List of data hashes [chunkO, chunkl,
chunk?2, ...]

e Odds - List of Merkle hashes (hashes of child
even nodes) [hash0, hashl, hash2, ...]

These two lists get interleaved into a single register
such that the indexes (position) in the register are
the same as the bin numbers from the Merkle tree.

All odd hashes are derived by hashing the two child
nodes, e.g. given hash0 is hash(chunkO) and hash2
is hash(chunk1), hashl is hash(hashO + hash2).

For example a register with two data entries would
look something like this (pseudocode):

0. hash(valueO)
. hash(hash(chunk0) + hash(chunkl))
2. hash(valuel)

[

It is possible for the in-order Merkle tree to have
multiple roots at once. A root is defined as a parent

node with a full set of child node slots filled below it.

For example, this tree hash 2 roots (1 and 4)

0

4

This tree hash one root (3):

This one has one root (1):

0

Replication Example

This section describes in high level the replication flow
of a Dat. Note that the low level details are available
by reading the SLEEP section below. For the sake of
illustrating how this works in practice in a networked
replication scenario, consider a folder with two files:

bat. jpg
cat.jpg

To send these files to another machine using Dat,
you would first add them to a Dat repository by
splitting them into chunks and constructing SLEEP
files representing the chunks and filesystem metadata.

Let’s assume bat.jpg and cat.jpg both produce
three chunks, each around 64KB. Dat stores in a
representation called SLEEP, but here we will show a
pseudo-representation for the purposes of illustrating
the replication process. The six chunks get sorted
into a list like this:

bat-1
bat-2
bat-3
cat-1
cat-2
cat-3

These chunks then each get hashed, and the hashes
get arranged into a Merkle tree (the content register):

0 - hash(bat-1)
1 - hash(0 + 2)

2 - hash(bat-2)
3 - hash(1 + 5)

4 - hash(bat-3)
5 - hash(4 + 6)

6 - hash(cat-1)
8 - hash(cat-2)
9 - hash(8 + 10)

10 - hash(cat-3)

Next we calculate the root hashes of our tree, in
this case 3 and 9. We then hash them together, and
cryptographically sign the hash. This signed hash
now can be used to verify all nodes in the tree, and

the signature proves it was produced by us, the holder
of the private key for this Dat.

This tree is for the hashes of the contents of the photos.
There is also a second Merkle tree that Dat generates
that represents the list of files and their metadata and
looks something like this (the metadata register):

0 - hash({contentRegister: '9e29d624...'})
1 - hash(0 + 2)

hash({"bat.jpg", first: 0, length: 3})

hash({"cat.jpg", first: 3, length: 3})

2
4 -

The first entry in this feed is a special metadata entry
that tells Dat the address of the second feed (the
content register). Note that node 3 is not included
yet, because 3 is the hash of 1 + 5, but 5 does not
exist yet, so will be written at a later update.

Now we’re ready to send our metadata to the other
peer. The first message is a Register message with
the key that was shared for this Dat. Let’s call our-
selves Alice and the other peer Bob. Alice sends Bob
a Want message that declares they want all nodes in
the file list (the metadata register). Bob replies with
a single Have message that indicates he has 2 nodes
of data. Alice sends three Request messages, one for
each leaf node (0, 2, 4). Bob sends back three Data
messages. The first Data message contains the content
register key, the hash of the sibling, in this case node
2, the hash of the uncle root 4, as well as a signature
for the root hashes (in this case 1, 4). Alice verifies
the integrity of this first Data message by hashing the
metadata received for the content register metadata
to produce the hash for node 0. They then hash the
hash 0 with the hash 2 that was included to reproduce
hash 1, and hashes their 1 with the value for 4 they
received, which they can use the received signature
to verify it was the same data. When the next Data
message is received, a similar process is performed to
verify the content.

Now Alice has the full list of files in the Dat, but
decides they only want to download cat.png. Alice
knows they want blocks 3 through 6 from the content
register. First Alice sends another Register message
with the content key to open a new replication channel
over the connection. Then Alice sends three Request

messages, one for each of blocks 4, 5, 6. Bob sends
back three Data messages with the data for each block,
as well as the hashes needed to verify the content in
a way similar to the process described above for the
metadata feed.

2.5 Random Access

Dat pursues the following access capabilities:

e Support large file hierachies (millions of files in a
single repository).

o Support efficient traversal of the hierarchy (listing
files in arbitrary folders efficiently).

o Store all changes to all files (metadata and/or
content).

o List all changes made to any single file.

o View the state of all files relative to any point in
time.

o Subscribe live to all changes (any file).

e Subscribe live to changes to files under a specific
path.

o Efficiently access any byte range of any version
of any file.

e Allow all of the above to happen remotely, only
syncing the minimum metadata necessary to per-
form any action.

e Allow efficient comparison of remote and local
repository state to request missing pieces during
synchronization.

o Allow entire remote archive to be synchronized,
or just some subset of files and/or versions.

The way Dat accomplishes these is through a combi-
nation of storing all changes in Hypercore feeds, but
also using strategic metadata indexing strategies that
support certain queries efficiently to be performed by
traversing the Hypercore feeds. The protocol itself is
specified in Section 3 (SLEEP), but a scenario based
summary follows here.

Scenario: Reading a file from a specific byte
offset

Alice has a dataset in Dat, Bob wants to access a
100MB CSV called cat_dna.csv stored in the remote
repository, but only wants to access the 10MB range
of the CSV spanning from 30MB - 40MB.

Bob has never communicated with Alice before, and is
starting fresh with no knowledge of this Dat repository
other than that he knows he wants cat_dna.csv at
a specific offset.

First, Bob asks Alice through the Dat protocol for
the metadata he needs to resolve cat_dna.csv to the
correct metadata feed entry that represents the file he
wants. Note: In this scenario we assume Bob wants
the latest version of cat_dna.csv. It is also possible
to do this for a specific older version.

Bob first sends a Request message for the latest en-
try in the metadata feed. Alice responds. Bob looks
at the trie value, and using the lookup algorithm
described below sends another Request message for
the metadata node that is closer to the filename he
is looking for. This repeats until Alice sends Bob the
matching metadata entry. This is the un-optimized
resolution that uses log(n) round trips, though there
are ways to optimize this by having Alice send addi-
tional sequence numbers to Bob that help him traverse
in less round trips.

In the metadata record Bob recieved for cat_dna.csv
there is the byte offset to the beginning of the file in
the data feed. Bob adds his +30MB offset to this value
and starts requesting pieces of data starting at that
byte offset using the SLEEP protocol as described
below.

This method tries to allow any byte range of any file
to be accessed without the need to synchronize the
full metadata for all files up front.

Scenario: Syncing live changes to files at a
specific path

TODO

Scenario: Syncing an entire archive

TODO

3. Dat Network Protocol

The SLEEP format is designed to allow for sparse
replication, meaning you can efficiently download only
the metadata and data required to resolve a single
byte region of a single file, which makes Dat suitable
for a wide variety of streaming, real time and large
dataset use cases.

To take advantage of this, Dat includes a network
protocol. It is message-based and stateless, mak-
ing it possible to implement on a variety of network
transport protocols including UDP and TCP. Both
metadata and content registers in SLEEP share the
exact same replication protocol.

Individual messages are encoded using Protocol
Buffers and there are ten message types using the
following schema:

Wire Protocol

Over the wire messages are packed in the following
lightweight container format

<varint - length of rest of message>
<varint - header>
<message>

The header value is a single varint that has two pieces
of information: the integer type that declares a 4-bit
message type (used below), and a channel identifier,
0 for metadata and 1 for content.

To generate this varint, you bitshift the 4-bit type
integer onto the end of the channel identifier, e.g.
channel << 4 | <4-bit-type>.

Feed

Type 0. Should be the first message sent on a channel.

e discoveryKey - A BLAKE2b keyed hash of the
string ‘hypercore’ using the public key of the
metadata register as the key.

e nonce - 32 bytes of random binary data, used in
our encryption scheme

message Feed {
required bytes discoveryKey = 1;
optional bytes nonce = 2;

}

Handshake

Type 1. Overall connection handshake. Should be
sent just after the feed message on the first channel
only (metadata).

e id - 32 byte random data used as a identifier
for this peer on the network, useful for checking
if you are connected to yourself or another peer
more than once

e live - Whether or not you want to operate in
live (continuous) replication mode or end after
the initial sync

e userData - User-specific metadata encoded as a
byte sequence

e extensions - List of extensions that are sup-
ported on this Feed

message Handshake {
optional bytes id = 1;
optional bool live = 2;
optional bytes userData = 3;
repeated string extensions = 4;

Info

Type 2. Message indicating state changes. Used to
indicate whether you are uploading and/or download-
ing.

Initial state for uploading/downloading is true. If
both ends are not downloading and not live it is safe
to consider the stream ended.

message Info {
optional bool uploading = 1;
optional bool downloading =

}

2;

Have

Type 3. How you tell the other peer what chunks of
data you have or don’t have. You should only send
Have messages to peers who have expressed interest
in this region with Want messages.

e start - If you only specify start, it means you
are telling the other side you only have 1 chunk
at the position at the value in start.

e length - If you specify length, you can describe
a range of values that you have all of, starting
from start.

e bitfield - If you would like to send a range of
sparse data about haves/don’t haves via bitfield,
relative to start.

message Have {
required uint64 start = 1;
optional uint64 length = 2 [default =
optional bytes bitfield = 3;

3

11;

When sending bitfields you must run length encode
them. The encoded bitfield is a series of compressed
and uncompressed bit sequences. All sequences start
with a header that is a varint.

If the last bit is set in the varint (it is an odd number)
then a header represents a compressed bit sequence.

compressed-sequence = varint(
byte-length-of-sequence
<< 2 | bit << 1 | 1

)

If the last bit is not set then a header represents a
non-compressed sequence.

uncompressed-sequence = varint(
byte-length-of-bitfield << 1 | 0
) + (bitfield)

Unhave

Type 4. How you communicate that you deleted or
removed a chunk you used to have.

message Unhave {

required uint64 start = 1;

optional uint64 length = 2 [default =
}

11

Want

Type 5. How you ask the other peer to subscribe you
to Have messages for a region of chunks. The length
value defaults to Infinity or feed.length (if not live).

message Want {
required uint64 start = 1;
optional uint64 length = 2;
}

Unwant

Type 6. How you ask to unsubscribe from Have

messages for a region of chunks from the other peer.

You should only Unwant previously Wanted regions,
but if you do Unwant something that hasn’t been
Wanted it won’t have any effect. The length value
defaults to Infinity or feed.length (if not live).

message Unwant {
required uint64 start = 1;
optional uint64 length = 2;
}

Request

Type 7. Request a single chunk of data.

e index - The chunk index for the chunk you want.

You should only ask for indexes that you have
received the Have messages for.

e bytes - You can also optimistically specify a
byte offset, and in the case the remote is able to
resolve the chunk for this byte offset depending

on their Merkle tree state, they will ignore the
index and send the chunk that resolves for this
byte offset instead. But if they cannot resolve
the byte request, index will be used.

e hash - If you only want the hash of the chunk
and not the chunk data itself.

e nodes - A 64 bit long bitfield representing which
parent nodes you have.

The nodes bitfield is an optional optimization to re-
duce the amount of duplicate nodes exchanged during
the replication lifecycle. It indicates which parents
you have or don’t have. You have a maximum of 64
parents you can specify. Because uint64 in Protocol
Buffers is implemented as a varint, over the wire this
does not take up 64 bits in most cases. The first
bit is reserved to signify whether or not you need a
signature in response. The rest of the bits represent
whether or not you have (1) or don’t have (0) the
information at this node already. The ordering is
determined by walking parent, sibling up the tree all
the way to the root.

message Request {
required uint64 index = 1;
optional uint64 bytes = 2;
optional bool hash = 3;
optional uint64 nodes = 4;

Cancel

Type 8. Cancel a previous Request message that you
haven’t received yet.

message Cancel {
required uint64 index
optional uint64 bytes
optional bool hash = 3;
Iy

o
N -

Data

Type 9. Sends a single chunk of data to the other
peer. You can send it in response to a Request or
unsolicited on its own as a friendly gift. The data

10

includes all of the Merkle tree parent nodes needed
to verify the hash chain all the way up to the Merkle
roots for this chunk. Because you can produce the
direct parents by hashing the chunk, only the roots
and ‘uncle’ hashes are included (the siblings to all of
the parent nodes).

e index - The chunk position for this chunk.

e value - The chunk binary data. Empty if you
are sending only the hash.

e Node.index - The index for this chunk in in-order
notation

e Node.hash - The hash of this chunk

e Node.size- The aggregate chunk size for all chil-
dren below this node (The sum of all chunk sizes
of all children)

e signature - If you are sending a root node, all
root nodes must have the signature included.

message Data {
required uint64 index = 1;
optional bytes value = 2;
repeated Node nodes = 3;

optional bytes signature = 4;
message Node {
required uint64 index 1;

required bytes hash = 2;
required uint64 size = 3;
}
}

4. Multi-Writer

The design of Dat up to this point assumes you have
a single keyholder writing and signing data and ap-
pending it to the metadata and content feed. However
having the ability for multiple keyholders to be able to
write to a single repository allows for many interesting
use cases such as forking and collaborative workflows.

In order to do this, we use one metadata.data feed
for each writer. Each writer kets their own keypair.
Each writer is responsible for storing their private key.
To add a new writer to your feed, you include their

key in a metadata feed entry.

For example, if Alice wants to add Bob to have write
access to a Dat repository, Alice would take Bob’s
public key and writes it to the ‘local’ metadata feed
(the feed that Alice owns, e.g. the original feed). Now
anyone else who replicates from Alice will find Bob’s
key in the history. If in the future Bob distributes a
version of the Dat that he added new data to, everyone
who has a copy of the Dat from Alice will have a copy
of Bob’s key that they can use to verify that Bob’s
writes are valid.

On disk, each users feed is stored in a separate hy-
perdrive. The original hyperdrive (owned by Alice) is
called the ‘local’ hyperdrive. Bob’s hyperdrive would
be stored separately in the SLEEP folder addressed
by Bob’s public key.

In case Bob and Alice write different values for the
same file (e.g. Bob creates a “fork”), when they sync
up with each other replication will still work, but for
the forked value the Dat client will return an array
of values for that key instead of just one value. The
values are linked to the writer that wrote them, so
in the case of receiving multiple values, clients can
choose to choose the value from Alice, or Bob, or the
latest value, or whatever other strategy they prefer.

If a writer updates the value of a forked key with new
value they are performing a merge.

5. Existing Work

Dat is inspired by a number of features from existing
systems.

Git

Git popularized the idea of a directed acyclic graph
(DAG) combined with a Merkle tree, a way to repre-
sent changes to data where each change is addressed
by the secure hash of the change plus all ancestor
hashes in a graph. This provides a way to trust data

11

integrity, as the only way a specific hash could be de-
rived by another peer is if they have the same data and
change history required to reproduce that hash. This
is important for reproducibility as it lets you trust
that a specific git commit hash refers to a specific
source code state.

Decentralized version control tools for source code
like Git provide a protocol for efficiently downloading
changes to a set of files, but are optimized for text
files and have issues with large files. Solutions like Git-
LFS solve this by using HT'TP to download large files,
rather than the Git protocol. GitHub offers Git-LF'S
hosting but charges repository owners for bandwidth
on popular files. Building a distributed distribution
layer for files in a Git repository is difficult due to
design of Git Packfiles which are delta compressed
repository states that do not easily support random
access to byte ranges in previous file versions.

BitTorrent

BitTorrent implements a swarm based file sharing
protocol for static datasets. Data is split into fixed
sized chunks, hashed, and then that hash is used to
discover peers that have the same data. An advantage
of using BitTorrent for dataset transfers is that down-
load bandwidth can be fully saturated. Since the file
is split into pieces, and peers can efficiently discover
which pieces each of the peers they are connected to
have, it means one peer can download non-overlapping
regions of the dataset from many peers at the same
time in parallel, maximizing network throughput.

Fixed sized chunking has drawbacks for data that
changes. BitTorrent assumes all metadata will be
transferred up front which makes it impractical for
streaming or updating content. Most BitTorrent
clients divide data into 1024 pieces meaning large
datasets could have a very large chunk size which im-
pacts random access performance (e.g. for streaming
video).

Another drawback of BitTorrent is due to the way
clients advertise and discover other peers in absence
of any protocol level privacy or trust. From a user

privacy standpoint, BitTorrent leaks what users are
accessing or attempting to access, and does not pro-
vide the same browsing privacy functions as systems
like SSL.

Kademlia Distributed Hash Table

Kademlia (Maymounkov and Mazieres 2002) is a dis-
tributed hash table, a distributed key/value store that
can serve a similar purpose to DNS servers but has no
hard coded server addresses. All clients in Kademlia
are also servers. As long as you know at least one
address of another peer in the network, you can ask
them for the key you are trying to find and they will
either have it or give you some other people to talk
to that are more likely to have it.

If you don’t have an initial peer to talk to you, most
clients use a bootstrap server that randomly gives
you a peer in the network to start with. If the boot-
strap server goes down, the network still functions as
long as other methods can be used to bootstrap new
peers (such as sending them peer addresses through
side channels like how .torrent files include tracker
addresses to try in case Kademlia finds no peers).

Kademlia is distinct from previous DHT designs due
to its simplicity. It uses a very simple XOR operation
between two keys as its “distance” metric to decide
which peers are closer to the data being searched for.
On paper it seems like it wouldn’t work as it doesn’t
take into account things like ping speed or bandwidth.
Instead its design is very simple on purpose to mini-
mize the amount of control/gossip messages and to
minimize the amount of complexity required to im-
plement it. In practice Kademlia has been extremely
successful and is widely deployed as the “Mainline
DHT?” for BitTorrent, with support in all popular
BitTorrent clients today.

Due to the simplicity in the original Kademlia design
a number of attacks such as DDOS and/or sybil have
been demonstrated. There are protocol extensions
(BEPs) which in certain cases mitigate the effects
of these attacks, such as BEP 44 which includes a

12

DDOS mitigation technique. Nonetheless anyone us-
ing Kademlia should be aware of the limitations.

Peer to Peer Streaming Peer Protocol
(PPSPP)

PPSPP (IETF RFC 7574, (Bakker, Petrocco, and
Grishchenko 2015)) is a protocol for live streaming
content over a peer to peer network. In it they define
a specific type of Merkle Tree that allows for subsets
of the hashes to be requested by a peer in order to
reduce the time-till-playback for end users. BitTorrent
for example transfers all hashes up front, which is not
suitable for live streaming.

Their Merkle trees are ordered using a scheme they
call “bin numbering”, which is a method for determin-
istically arranging an append-only log of leaf nodes
into an in-order layout tree where non-leaf nodes are
derived hashes. If you want to verify a specific node,
you only need to request its sibling’s hash and all its
uncle hashes. PPSPP is very concerned with reducing
round trip time and time-till-playback by allowing for
many kinds of optimizations, such as to pack as many
hashes into datagrams as possible when exchanging
tree information with peers.

Although PPSPP was designed with streaming video
in mind, the ability to request a subset of metadata
from a large and/or streaming dataset is very desirable
for many other types of datasets.

WebTorrent

With WebRTC, browsers can now make peer to peer
connections directly to other browsers. BitTorrent
uses UDP sockets which aren’t available to browser
JavaScript, so can’t be used as-is on the Web.

WebTorrent implements the BitTorrent protocol in
JavaScript using WebRTC as the transport. This
includes the BitTorrent block exchange protocol as
well as the tracker protocol implemented in a way
that can enable hybrid nodes, talking simultaneously
to both BitTorrent and WebTorrent swarms (if a

client is capable of making both UDP sockets as well
as WebRTC sockets, such as Node.js). Trackers are
exposed to web clients over HTTP or WebSockets.

InterPlanetary File System

IPFS is a family of application and network protocols
that have peer to peer file sharing and data perma-
nence baked in. TPFS abstracts network protocols
and naming systems to provide an alternative applica-
tion delivery platform to today’s Web. For example,
instead of using HTTP and DNS directly, in IPFS
you would use LibP2P streams and IPNS in order to
gain access to the features of the IPFS platform.

Certificate Transparency/Secure Reg-
isters

The UK Government Digital Service have developed
the concept of a register which they define as a digital
public ledger you can trust. In the UK government
registers are beginning to be piloted as a way to expose
essential open data sets in a way where consumers
can verify the data has not been tampered with, and
allows the data publishers to update their data sets
over time.

The design of registers was inspired by the infrastruc-
ture backing the Certificate Transparency (Laurie,
Langley, and Kasper 2013) project, initiated at Google,
which provides a service on top of SSL certificates that
enables service providers to write certificates to a dis-
tributed public ledger. Any client or service provider
can verify if a certificate they received is in the ledger,
which protects against so called “rogue certificates”.

6. Reference Implementation

The connection logic is implemented in a module
called discovery-swarm. This builds on discovery-
channel and adds connection establishment, manage-
ment and statistics. It provides statistics such as how
many sources are currently connected, how many good

13

https://datatracker.ietf.org/doc/rfc7574/?include_text=1
https://www.npmjs.com/package/discovery-swarm

and bad behaving sources have been talked to, and it
automatically handles connecting and reconnecting to
sources. UTP support is implemented in the module
utp-native.

Our implementation of source discovery is called
discovery-channel. We also run a custom DNS server
that Dat clients use (in addition to specifying their
own if they need to), as well as a DHT bootstrap
server. These discovery servers are the only central-
ized infrastructure we need for Dat to work over the
Internet, but they are redundant, interchangeable,
never see the actual data being shared, anyone can
run their own and Dat will still work even if they all
are unavailable. If this happens discovery will just be
manual (e.g. manually sharing IP/ports).

Acknowledgements

This work was made possible through grants from the
John S. and James L. Knight and Alfred P. Sloan
Foundations.

References

Aumasson, Jean-Philippe, Samuel Neves, Zooko
Wilcox-O’Hearn, and Christian Winnerlein. 2013.
“BLAKE2: Simpler, Smaller, Fast as Md5.” In In-
ternational Conference on Applied Cryptography and
Network Security, 119-35. Springer.

Bakker, A, R Petrocco, and V Grishchenko. 2015.
“Peer-to-Peer Streaming Peer Protocol (Ppspp).”

Bernstein, Daniel J, Niels Duif, Tanja Lange, Pe-
ter Schwabe, and Bo-Yin Yang. 2012. “High-Speed
High-Security Signatures.” Journal of Cryptographic
Engineering. Springer, 1-13.

Laurie, Ben, Adam Langley, and Emilia Kasper. 2013.
“Certificate Transparency.”

Maymounkov, Petar, and David Mazieres. 2002.
“Kademlia: A Peer-to-Peer Information System Based

14

on the Xor Metric.” In International Workshop on
Peer-to-Peer Systems, 53—65. Springer.

Mykletun, Einar, Maithili Narasimha, and Gene
Tsudik. 2003. “Providing Authentication and In-
tegrity in Outsourced Databases Using Merkle Hash
Trees” UCI-SCONCE Technical Report.

Ogden, Maxwell, and Mathias Buus. 2017. “SLEEP -
the Dat Protocol on Disk Format.” In.

Rossi, Dario, Claudio Testa, Silvio Valenti, and Luca
Muscariello. 2010. “LEDBAT: The New Bittorrent
Congestion Control Protocol.” In ICCCN, 1-6.

https://www.npmjs.com/package/utp-native
https://npmjs.org/discovery-channel
https://www.npmjs.com/package/dns-discovery
https://github.com/bittorrent/bootstrap-dht

	Abstract
	1. Background
	2. Dat
	2.1 Content Integrity
	Dat Links
	Hypercore and Hyperdrive
	Hypercore Registers

	2.2 Decentralized Mirroring
	Source Discovery
	Peer Connections

	2.3 Network Privacy
	2.4 Incremental Versioning
	Metadata Versioning
	Content Versioning
	Merkle Trees
	Replication Example

	2.5 Random Access
	Scenario: Reading a file from a specific byte offset
	Scenario: Syncing live changes to files at a specific path
	Scenario: Syncing an entire archive

	3. Dat Network Protocol
	Wire Protocol
	Feed
	Handshake
	Info
	Have
	Unhave
	Want
	Unwant
	Request
	Cancel
	Data

	4. Multi-Writer
	5. Existing Work
	Git
	BitTorrent
	Kademlia Distributed Hash Table
	Peer to Peer Streaming Peer Protocol (PPSPP)
	WebTorrent
	InterPlanetary File System
	Certificate Transparency/Secure Registers

	6. Reference Implementation
	Acknowledgements
	References

