
Dat - Distributed Dataset Synchronization And Versioning
Maxwell Ogden, Karissa McKelvey, Mathias Buus

UNFINISHED, November 2016

Abstract

Dat is a protocol designed for syncing distributed,
dynamic datasets. A secure changelog is used to
ensure dataset versions are distributed safely. Files
are efficiently versioned by checking new file regions
against existing ones to duplication of existing sim-
ilar file regions. Any byte range of any version
of any file can be efficiently accessed as a stream
from a Dat repository over a network connection.
Consumers can choose to fully or partially replicate
the contents of a remote Dat repository, and can
also subscribe to live changes. Dat uses built-in
public key cryptography to encrypt and sign all
network traffic, allowing it to make certain privacy
and security guarantees.

1. Background

Sharing datasets over the Internet is a subject of
much study, but approaches remain relatively limit-
ing. The most widely used approach, sharing files
over HTTP, is subject to dead links when files are
moved or deleted, as HTTP has no concept of his-
tory or versioning built in. E-mailing datasets as
attachments is also widely used, and has the con-
cept of history built in, but many email providers
limit the maximum attachment size which makes it
impractical for many datasets.

Cloud storage services like S3 ensure availability of
data, but they have a centralized hub-and-spoke net-
working model and tend to be limited by their band-
width, meaning popular files can be come very ex-
pensive to share. Services like Dropbox and Google
Drive provide version control and synchronization
on top of cloud storage services which fixes many
issues with broken links but rely on proprietary code

and services requiring users to store their data on
cloud infrastructure which has implications on cost,
transfer speeds, and user privacy.

Distributed file sharing tools can become faster as
files become more popular, removing the bandwidth
bottleneck and making file distribution cheaper.
They also implement discovery systems which can
prevent broken links meaning if the original source
goes offline other backup sources can be automat-
ically discovered. However these file sharing tools
today are not supported by Web browsers, do not
have good privacy guarantees, and do not provide a
mechanism for updating files without redistributing
a new dataset which could mean entire redownload-
ing data you already have.

Scientists are an example of a group that would
benefit from better solutions to these problems. In-
creasingly scientific datasets are being provided on-
line using one of the above approaches and cited in
published literature. Broken links and systems that
do not provide version checking or content address-
ability of data directly limit the reproducibility of
scientific analyses based on shared datasets. Ser-
vices that charge a premium for bandwidth cause
monetary and data transfer strain on the users shar-
ing the data, who are often on fast public university
networks with effectively unlimited bandwidth that
go unused. Version control tools designed for text
files do not keep up with the demands of data anal-
ysis in science today.

2. Existing Work

Dat is inspired by a number of features from existing
systems.

1



2.1 Git

Git popularized the idea of a directed acyclic graph
(DAG) combined with a Merkle tree, a way to repre-
sent changes to data where each change is addressed
by the secure hash of the change plus all ancestor
hashes in a graph. This provides a way to trust
data integrity, as the only way a specific hash could
be derived by another peer is if they have the same
data and change history required to reproduce that
hash. This is important for reproducibility as it lets
you trust that a specific git commit hash refers to a
specific source code state.

Decentralized version control tools for source code
like Git provide a protocol for efficiently download-
ing changes to a set of files, but are optimized for
text files and have issues with large files. Solu-
tions like Git-LFS solve this by using HTTP to
download large files, rather than the Git protocol.
GitHub offers Git-LFS hosting but charges reposi-
tory owners for bandwidth on popular files. Build-
ing a distributed distribution layer for files in a Git
repository is difficult due to design of Git Packfiles
which are delta compressed repository states that
do not easily support random access to byte ranges
in previous file versions.

2.2 LBFS

LBFS is a networked file system that avoids trans-
ferring redundant data by deduplicating common
regions of files and only transferring unique regions
once. The deduplication algorithm they use is called
Rabin fingerprinting and works by hashing the con-
tents of the file using a sliding window and looking
for content defined chunk boundaries that probabilis-
tically appear at the desired byte offsets (e.g. every
1kb).

Content defined chunking has the benefit of being
shift resistant, meaning if you insert a byte into
the middle of a file only the first chunk boundary
to the right of the insert will change, but all other
boundaries will remain the same. With a fixed size
chunking strategy, such as the one used by rsync,
all chunk boundaries to the right of the insert will
be shifted by one byte, meaning half of the chunks
of the file would need to be retransmitted.

2.3 BitTorrent

BitTorrent implements a swarm based file sharing
protocol for static datasets. Data is split into fixed
sized chunks, hashed, and then that hash is used to
discover peers that have the same data. An advan-
tage of using BitTorrent for dataset transfers is that
download bandwidth can be fully saturated. Since
the file is split into pieces, and peers can efficiently
discover which pieces each of the peers they are
connected to have, it means one peer can down-
load non-overlapping regions of the dataset from
many peers at the same time in parallel, maximizing
network throughput.

Fixed sized chunking has drawbacks for data that
changes (see LBFS above). BitTorrent assumes all
metadata will be transferred up front which makes it
impractical for streaming or updating content. Most
BitTorrent clients divide data into 1024 pieces mean-
ing large datasets could have a very large chunk size
which impacts random access performance (e.g. for
streaming video).

Another drawback of BitTorrent is due to the way
clients advertise and discover other peers in absence
of any protocol level privacy or trust. From a user
privacy standpoint, BitTorrent leaks what users
are accessing or attempting to access, and does
not provide the same browsing privacy functions as
systems like SSL.

2.4 Kademlia Distributed Hash Table

Kademlia is a distributed hash table, a distributed
key/value store that can serve a similar purpose to
DNS servers but has no hard coded server addresses.
All clients in Kademlia are also servers. As long
as you know at least one address of another peer
in the network, you can ask them for the key you
are trying to find and they will either have it or
give you some other people to talk to that are more
likely to have it.

If you don’t have an initial peer to talk to you, most
clients use a bootstrap server that randomly gives
you a peer in the network to start with. If the boot-
strap server goes down, the network still functions
as long as other methods can be used to bootstrap
new peers (such as sending them peer addresses

2



through side channels like how .torrent files include
tracker addresses to try in case Kademlia finds no
peers).

Kademlia is distinct from previous DHT designs
due to its simplicity. It uses a very simple XOR
operation between two keys as its “distance” metric
to decide which peers are closer to the data being
searched for. On paper it seems like it wouldn’t work
as it doesn’t take into account things like ping speed
or bandwidth. Instead its design is very simple on
purpose to minimize the amount of control/gossip
messages and to minimize the amount of complexity
required to implement it. In practice Kademlia has
been extremely successful and is widely deployed as
the “Mainline DHT” for BitTorrent, with support
in all popular BitTorrent clients today.

Due to the simplicity in the original Kademlia design
a number of attacks such as DDOS and/or sybil have
been demonstrated. There are protocol extensions
(BEPs) which in certain cases mitigate the effects
of these attacks, such as BEP 44 which includes a
DDOS mitigation technique. Nonetheless anyone
using Kademlia should be aware of the limitations.

2.5 Peer to Peer Streaming Peer Pro-
tocol (PPSPP)

PPSPP (IETF RFC 7574) is a protocol for live
streaming content over a peer to peer network. In
it they define a specific type of Merkle Tree that
allows for subsets of the hashes to be requested by a
peer in order to reduce the time-till-playback for end
users. BitTorrent for example transfers all hashes
up front, which is not suitable for live streaming.

Their Merkle trees are ordered using a scheme they
call “bin numbering”, which is a method for deter-
ministically arranging an append-only log of leaf
nodes into an in-order layout tree where non-leaf
nodes are derived hashes. If you want to verify a spe-
cific node, you only need to request its sibling’s hash
and all its uncle hashes. PPSPP is very concerned
with reducing round trip time and time-till-playback
by allowing for many kinds of optimizations, such as
to pack as many hashes into datagrams as possible
when exchanging tree information with peers.

Although PPSPP was designed with streaming video
in mind, the ability to request a subset of metadata

from a large and/or streaming dataset is very desir-
able for many other types of datasets.

2.6 WebTorrent

With WebRTC browsers can now make peer to peer
connections directly to other browsers. BitTorrent
uses UDP sockets which aren’t available to browser
JavaScript, so can’t be used as-is on the Web.

WebTorrent implements the BitTorrent protocol in
JavaScript using WebRTC as the transport. This
includes the BitTorrent block exchange protocol as
well as the tracker protocol implemented in a way
that can enable hybrid nodes, talking simultaneously
to both BitTorrent and WebTorrent swarms (if a
client is capable of making both UDP sockets as well
as WebRTC sockets, such as Node.js). Trackers are
exposed to web clients over HTTP or WebSockets.

2.7 InterPlanetary File System

IPFS is a family of application and network pro-
tocols that have peer to peer file sharing and data
permanence baked in. IPFS abstracts network pro-
tocols and naming systems to provide an alternative
application delivery platform to todays Web. For
example, instead of using HTTP and DNS directly,
in IPFS you would use LibP2P streams and IPNS
in order to gain access to the features of the IPFS
platform.

2.8 Certificate Transparency/Secure
Registers

The UK Government Digital Service have developed
the concept of a register which they define as a
digital public ledger you can trust. In the UK
government registers are beginning to be piloted
as a way to expose essential open data sets in a way
where consumers can verify the data has not been
tampered with, and allows the data publishers to
update their data sets over time.

The design of registers was inspired by the infrastruc-
ture backing the Certificate Transparency project,
initated at Google, which provides a service on top
of SSL certificates that enables service providers

3

https://datatracker.ietf.org/doc/rfc7574/?include_text=1


to write certificates to a distributed public ledger.
Anyone client or service provider can verify if a cer-
tificate they received is in the ledger, which protects
against so called “rogue certificates”.

3. Dat

Dat is a dataset synchronization protocol that does
not assume a dataset is static or that the entire
dataset will be downloaded. The protocol is agnostic
to the underlying transport e.g. you could implement
Dat over carrier pigeon. The key properties of the
Dat design are explained in this section.

• 1. Mirroring - Any participant in the net-
work can simultaneously share and con-
sume data.

• 2. Content Integrity - Data and publisher
integrity is verified through use of signed
hashes of the content.

• 3. Parallel Replication - Subsets of the
data can be accessed from multiple peers
simultaneously, improving transfer speeds.

• 4. Efficient Versioning - Datasets can be
efficiently synced, even in real time, to
other peers using Dat Streams.

• 5. Network Privacy - Dat employs a capa-
bility system whereby anyone with a Dat
link can connect to the swarm, but the
link itself is very difficult to guess.

3.1 Mirroring

Dat is a peer to peer protocol designed to exchange
pieces of a dataset amongst a swarm of peers. As
soon as a peer acquires their first piece of data in the
dataset they can choose to become a partial mirror
for the dataset. If someone else contacts them and
needs the piece they have, they can choose to share
it. This can happen simultaneously while the peer
is still downloading the pieces they want.

3.1.1 Source Discovery

An important aspect of mirroring is source discovery,
the techniques that peers use to find each other.
Source discovery means finding the IP and port of
data sources online that have a copy of that data
you are looking for. You can then connect to them
and begin exchanging data using a Dat Stream. By
using source discovery techniques Dat is able to
create a network where data can be discovered even
if the original data source disappears.

Source discovery can happen over many kinds of
networks, as long as you can model the following
actions:

• join(key, [port]) - Begin performing regu-
lar lookups on an interval for key. Specify port
if you want to announce that you share key as
well.

• leave(key, [port]) - Stop looking for key.
Specify port to stop announcing that you share
key as well.

• foundpeer(key, ip, port) - Called when a
peer is found by a lookup

In the Dat implementation we implement the above
actions on top of four types of discovery networks:

• DNS name servers - An Internet standard mech-
anism for resolving keys to addresses

• Multicast DNS - Useful for discovering peers
on local networks

• Kademlia Mainline Distributed Hash Table -
Zero point of failure, increases probability of
Dat working even if DNS servers are unreach-
able

• Signalhub - An HTTP key resolving service,
non-distributed. Used by web browser clients
who can’t form raw UDP/TCP packets.

Additional discovery networks can be implemented
as needed. We chose the above four as a starting
point to have a complementary mix of strategies to
increase the probability of source discovery.

Our implementation of source discovery is called
discovery-channel. We also run a custom DNS server
that Dat clients use (in addition to specifying their

4

https://npmjs.org/signalhub
https://npmjs.org/discovery-channel
https://www.npmjs.com/package/dns-discovery


own if they need to), as well as a DHT bootstrap
server. These discovery servers are the only central-
ized infrastructure we need for Dat to work over the
Internet, but they are redundant, interchangeable,
never see the actual data being shared, anyone can
run their own and Dat will still work even if they
all are unavailable. If this happens discovery will
just be manual (e.g. manually sharing IP/ports).

TODO detail each discovery mechanism

3.1.2 Peer Connections

After the discovery phase, Dat should have a list
of potential data sources to try and contact. Dat
uses either TCP, UTP, WebSockets or WebRTC
for the network connections. UTP is designed to
not take up all available bandwidth on a network
(e.g. so that other people sharing wifi can still use
the Internet). WebSockets and WebRTC makes Dat
work in modern web browsers. Note that these are
the protocols we support in the reference Dat imple-
mentation, but the Dat protocol itself is transport
agnostic.

When Dat gets the IP and port for a potential source
it tries to connect using all available protocols and
hopes one works. If one connects first, Dat aborts
the other ones. If none connect, Dat will try again
until it decides that source is offline or unavailable
and then stops trying to connect to them. Sources
Dat is able to connect to go into a list of known
good sources, so that the Internet connection goes
down Dat can use that list to reconnect to known
good sources again quickly.

If Dat gets a lot of potential sources it picks a
handful at random to try and connect to and keeps
the rest around as additional sources to use later in
case it decides it needs more sources.

The connection logic is implemented in a module
called discovery-swarm. This builds on discovery-
channel and adds connection establishment, man-
agement and statistics. It provides statistics such
as how many sources are currently connected, how
many good and bad behaving sources have been
talked to, and it automatically handles connect-
ing and reconnecting to sources. UTP support is
implemented in the module utp-native.

Once a duplex binary connection to a remote source
is open Dat then layers on its own protocol on top
called a Dat Stream.

3.2 Content Integrity

Content integrity means being able to verify the
data you received is the exact same version of the
data that you expected. This is imporant in a
distributed system as this mechanism will catch
incorrect data sent by bad peers. It also has impli-
cations for reproducibility as it lets you refer to a
specific version of a dataset.
Link rot, when links online stop resolving, and con-
tent drift, when when data changes but the link to
the data remains the same, are two common issues
in data analysis. For example, one day a file called
data.zip might change, but a typical HTTP link to
the file does not include a hash of the content, or
provide a way to get updated metadata, so clients
that only have the HTTP link have no way to check
if the file changed without downloading the entire
file again. Referring to a file by the hash of its con-
tent is called content addressability, and lets users
not only verify that the data they receive is the
version of the data they want, but also lets people
cite specific versions of the data by referring to a
specific hash.
Dat uses SHA256 hashes to address content. Hashes
are arranged in a Merkle tree, a tree where each
non-leaf node is the hash of all child nodes. Leaf
nodes contain pieces of the dataset. This means
that in order to verify the integrity of some subset of
content only the top most common ancestors of the
leaf nodes that contain that content must be fetched.
For example to verify all content in a Merkle tree
the top level node of the tree can be used. Due
to the behavior of secure cryptographic hashes the
top hash can only be produced if all data below it
matches exactly. If two trees have matching top
hashes then you know that all other nodes in the
tree must match as well, and you can conclude that
your dataset is synchronized.

3.2.1 Hypercore and Hyperdrive

The Dat storage, content integrity, and networking
protocols are implemented in a module called Hy-

5

https://github.com/bittorrent/bootstrap-dht
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Micro_Transport_Protocol
https://www.npmjs.com/package/discovery-swarm
https://www.npmjs.com/package/utp-native
https://npmjs.org/hypercore


percore. Hypercore is agnostic to the format of the
input data, it operates on any stream of binary data.
For the Dat use case of synchronizing datasets we
use a file system module on top of Hypercore called
Hyperdrive.

We have a layered abstraction so that if someone
wishes they can use Hypercore directly to have full
control over how they model their data. Hyperdrive
works well when your data can be represented as
files on a filesystem, which is our main use case with
Dat.

3.2.2 Dat Streams

Dat Streams are binary append-only stream whose
contents are cryptographically hashed and signed
and therefore can be verified by anyone with access
to the public key of the writer. They are an im-
plemenation of the concept known as a register, a
digital ledger you can trust. Dat lets you create
many Streams, and replicates them when synchro-
nizing with another peer.

Dat Streams use a specific method of encoding a
Merkle tree where hashes are positioned by a scheme
called binary interval numbering or just simply “bin”
numbering. This is just a specific, deterministic way
of laying out the nodes in a tree. For example a
tree with 7 nodes will always be arranged like this:

0
1

2
3

4
5

6

In our use case, the hashes of the actual content
are always even numbers, at the wide end of the
tree. So the above tree had four original values that
become the even numbers:

value0 -> 0
value1 -> 2
value2 -> 4
value3 -> 6

A Dat Stream contains two pieces of information:

Evens: List of binary values with their hash and
size: [value0, value1, value2, . . . ] Odds: List of
Merkle hashes with the size of all their children:
[hash0, hash1, hash2, . . . ]

These two lists get interleaved into a single register
such that the indexes (position) in the register are
the same as the bin numbers from the Merkle tree.

All odd hashes are derived by hashing the two child
nodes, e.g. given hash0 is hash(value0) and hash2
is hash(value1), hash1 is hash(hash0 + hash2).

For example a Dat Stream with two data entries
would look something like this (pseudocode):

0. hash(value0)
1. hash(hash(value0) + hash(value1))
2. hash(value1)

3.3 Parallel Replication

Dat Streams include a message based replication
protocol so two peers can communicate over a state-
less channel to discover and exchange data. Once
you have received the Stream metadata, you can
make individual requests for chunks from any peer
you are connected to. This allows clients to paral-
lelize data requests across the entire pool of peers
they have established connections with.

Messages are encoded using Protocol Buffers. The
protocol has nine message types:

Open This should be the first message sent and
is also the only message without a type. It looks
like this:

message Open {
required bytes feed = 1;
required bytes nonce = 2;

}

The feed should be set to the discovery key as
specified above. The nonce should be set to 24
bytes of high entropy random data. When running
in encrypted mode this is the only message sent
unencrypted.

6

https://npmjs.org/hypercore
https://npmjs.org/hyperdrive


0 Handshake This message is sent after sending
an open message so it will be encrypted and we
won’t expose our peer id to a third party.

message Handshake {
required bytes id = 1;
repeated string extensions = 2;

}

1 Have Have messages give the other peer infor-
mation about which blocks of data you have.

message Have {
required uint64 start = 1;
optional uint64 end = 2;
optional bytes bitfield = 3;

}

You can use start and end to represent a range of
data block bin numbers. If using a bitfield it should
be encoded using a run length encoding described
above. It is a good idea to send a have message soon
as possible if you have blocks to share to reduce
latency.

2 Want You can send a have message to give the
other peer information about which blocks of data
you want to have. It has type 2.

message Want {
required uint64 start = 1;
optional uint64 end = 2;

}

You should only send the want message if you are
interested in a section of the feed that the other
peer has not told you about.

3 Request Send this message to request a block
of data. You can request a block by block index or
byte offset. If you are only interested in the hash of
a block you can set the hash property to true. The
nodes property can be set to a tree digest of the
tree nodes you already have for this block or byte
range. A request message has type 3.

message Request {
optional uint64 block = 1;
optional uint64 bytes = 2;
optional bool hash = 3;
optional uint64 nodes = 4;

}

4 Data Send a block of data to the other peer.
You can use this message to reply to a request or
optimistically send other blocks of data to the other
client. It has type 4.

message Data {
message Node {

required uint64 index = 1;
required uint64 size = 2;
required bytes hash = 3;

}

required uint64 block = 1;
optional bytes value = 2;
repeated Node nodes = 3;
optional bytes signature = 4;

}

5 Cancel Cancel a previous sent request. It has
type 5.

message Cancel {
optional uint64 block = 1;
optional uint64 bytes = 2;

}

6 Pause An empty message that tells the other
peer that they should stop requesting new blocks
of data. It has type 6.

7 Resume An empty message that tells the other
peer that they can continue requesting new blocks
of data. It has type 7.

3.4 Efficient Versioning

Given a stream of binary data, Dat splits the stream
into chunks using Rabin fingerprints, hashes each
chunk, and arranges the hashes in a specific type

7



of Merkle tree that allows for certain replication
properties. Dat uses the chunk boundaries provided
by Rabin fingerprinting to decide where to slice up
the binary input stream. The Rabin implementation
in Dat is tuned to produce a chunk every 16kb
on average. This means for a 1MB file the initial
chunking will produce around 64 chunks.

If a 1 byte edit is made to the file, chunking again
should produce 63 existing chunks and 1 new chunk.
This allows for deduplication of similar file regions
across versions, which means Dat can avoid retrans-
mitting or storing the same chunk twice even if it
appears in multiple files.

Dat is also able to fully or partially synchronize
streams in a distributed setting even if the stream
is being appended to. This is accomplished by
using the messaging protocol to traverse the Merkle
tree of remote sources and fetch a strategic set of
nodes. Due to the low level message oriented design
of the replication protocol different node traversal
strategies can be implemented.

TODO example of using protocol messages to re-
quest a subset of nodes in a live sync scenario

var log = [
{

hash: hash(value + size),
size: value.length
value: <some buffer>

},
{

hash: hash(log[0].hash+log[2].hash+size),
size: log[0].size + log[1].size

},
{

hash: hash(value + size),
size: value.length
value: <some buffer>

}
]

3.6 Network Privacy

On the Web today, with SSL, there is a guarantee
that the traffic between your computer and the
server is private. As long as you trust the server
to not leak your logs, attackers who intercept your

network traffic will not be able to read the HTTP
traffic exchanged between you and the server. This
is a fairly straightforward model as clients only have
to trust a single server for some domain.
There is an inherent tradeoff in peer to peer sys-
tems of source discovery vs. user privacy. The more
sources you contact and ask for some data, the more
sources you trust to keep what you asked for private.
Our goal is to have Dat be configurable in respect
to this tradeoff to allow application developers to
meet their own privacy guidelines.
It is up to client programs to make design decisions
around which discovery networks they trust. For
example if a Dat client decides to use the BitTorrent
DHT to discover peers, and they are searching for a
publicly shared Dat key with known contents, then
because of the privacy design of the BitTorrent DHT
it becomes public knowledge what key that client is
searching for.
A client could choose to only use discovery networks
with certain privacy guarantees. For example a
client could only connect to an approved list of
sources that they trust, similar to SSL. As long as
they trust each source, the encryption built into the
Dat network protocol will prevent the Dat key they
are looking for from being leaked.

3.6.2 Security

Dat links are Ed25519 public keys which have a
length of 32 bytes (64 characters when Base64 en-
coded). Every Dat repository has corresponding a
private key that kept internally in the Dat metadata
and never shared.
Dat never exposes either the public or private key
over the network. During the discovery phase the
SHA256 hash of the public key is used as the dis-
covery key. This means that the original key is
impossible to discover (unless it was shared publicly
through a separate channel) since only the hash of
the key is exposed publicly.
All messages in the Dat protocol are encrypted using
the public key during transport. This means that
unless you know the public key (e.g. unless the Dat
link was shared with you) then you will not be able
to discover or communicate with any member of the
swarm for that Dat. Anyone with the public key

8



can verify that messages (such as entries in a Dat
Stream) were created by a holder of the private key.

Dat does not provide an authentication mechanism.
Instead it provides a capability system. Anyone
with the Dat link is currently considered able to dis-
cover and access data. Do not share your Dat links
publicly if you do not want them to be accessed.

9


	Abstract
	1. Background
	2. Existing Work
	2.1 Git
	2.2 LBFS
	2.3 BitTorrent
	2.4 Kademlia Distributed Hash Table
	2.5 Peer to Peer Streaming Peer Protocol (PPSPP)
	2.6 WebTorrent
	2.7 InterPlanetary File System
	2.8 Certificate Transparency/Secure Registers

	3. Dat
	3.1 Mirroring
	3.1.1 Source Discovery
	3.1.2 Peer Connections

	3.2 Content Integrity
	3.2.1 Hypercore and Hyperdrive
	3.2.2 Dat Streams

	3.3 Parallel Replication
	3.4 Efficient Versioning
	3.6 Network Privacy
	3.6.2 Security



