
Dat - Distributed Dataset Synchronization And Versioning
Maxwell Ogden, Karissa McKelvey, Mathias Buus

Version 1.0.0, May 2016

Abstract

Dat is a swarm based version control system designed
for sharing datasets over networks such that their
contents can be accessed randomly, be updated incre-
mentally, and have the integrity of their contents be
trusted. Every Dat user is simultaneously a server and
a client exchanging pieces of data with other clients in
a swarm on demand. As data is added to a Dat repos-
itory updated files are split into pieces using Rabin
fingerprinting and deduplicated against known pieces
to avoid retransmission of data. File contents are
automatically verified using secure hashes meaning
you do not need to trust other nodes.

1. Introduction

There are countless ways to share datasets over the
Internet today. The simplest and most widely used
approach, sharing files over HTTP, is subject to dead
links when files are moved or deleted, as HTTP has
no concept of history or versioning built in. E-mailing
datasets as attachments is also widely used, and
has the concept of history built in, but many email
providers limit the maximum attachment size which
makes it impractical for many datasets.

Cloud storage services like S3 ensure availability of
data, but they have a centralized hub-and-spoke net-
working model and tend to be limited by their band-
width, meaning popular files can be come very ex-
pensive to share. Services like Dropbox and Google
Drive provide version control and synchronization on
top of cloud storage services which fixes many issues
with broken links but rely on proprietary code and

services requiring users to store their data on cloud
infrastructure which has implications on cost, transfer
speeds, and user privacy.

Distributed file sharing tools like BitTorrent become
faster as files become more popular, removing the
bandwidth bottleneck and making file distribution ef-
fectively free. They also implement discovery systems
which prevents broken links meaning if the original
source goes offline other backup sources can be auto-
matically discovered. However P2P file sharing tools
today are not supported by Web browsers and do
not provide a mechanism for updating files without
redistributing a new dataset which could mean entire
redownloading data you already have.

Decentralized version control tools for source code
like Git provide a protocol for efficiently downloading
changes to a set of files, but are optimized for text
files and have issues with large files. Solutions like Git-
LFS solve this by using HTTP to download large files,
rather than the Git protocol. GitHub offers Git-LFS
hosting but charges repository owners for bandwidth
on popular files. Building a peer to peer distribution
layer for files in a Git repository is difficult due to
design of Git Packfiles which are delta compressed
repository states that do not support random access
to byte ranges in previous file versions.

Scientists are an example of an important group that
would benefit from better solutions to these problems.
Increasingly scientific datasets are being provided on-
line using one of the above approaches and cited in
published literature. Broken links and systems that
do not provide version checking or content address-
ability of data directly limit the reproducibility of
scientific analyses based on shared datasets. Services
that charge a premium for bandwidth cause mone-

1



tary and data transfer strain on the users sharing the
data, who are often on fast public university networks
with effectively unlimited bandwidth. Version control
tools designed for text files do not keep up with the
demands of large data analysis in science today.

2. Inspiration

Dat is inspired by a number of features from existing
systems.

2.1 Git

Git popularized the idea of a Merkle directed acyclic
graph (Merkle DAG), a way to represent changes to
data where each change is addressed by the secure
hash of the change plus all ancestor hashes in a graph.
This provides a way to trust data integrity, as the
only way a specific hash could be derived by another
peer is if they have the same data and change history
required to reproduce that hash. This is important
for reproducibility as it lets you trust that a specific
git commit hash refers to a specific source code state.

2.2 LBFS

LBFS is a networked file system that avoids transfer-
ring redundant data by deduplicating common regions
of files and only transferring unique regions once. The
deduplication algorithm they use is called Rabin fin-
gerprinting and works by hashing the contents of the
file using a sliding window and looking for content de-
fined chunk boundaries that probabilistically appear
at the desired byte offsets (e.g. every 1kb).

Content defined chunking has the benefit of being shift
resistant, meaning if you insert a byte into the middle
of a file only the first chunk boundary to the right of
the insert will change, but all other boundaries will
remain the same. With a fixed size chunking strategy,
such as the one used by rsync, all chunk boundaries
to the right of the insert will be shifted by one byte,

meaning half of the chunks of the file would need to
be retransmitted.

2.3 BitTorrent

BitTorrent implements a swarm based file sharing
protocol for static datasets. Data is split into fixed
sized chunks, hashed, and then that hash is used to
discover peers that have the same data. An advantage
of using BitTorrent for dataset transfers is that down-
load bandwidth can be fully saturated. Since the file
is split into pieces, and peers can efficiently discover
which pieces each of the peers they are connected to
have, it means one peer can download non-overlapping
regions of the dataset from many peers at the same
time in parallel, maximizing network throughput.

Fixed sized chunking has drawbacks for data that
changes (see LBFS above). BitTorrent assumes all
metadata will be transferred up front which makes it
impractical for streaming or updating content. Most
BitTorrent clients divide data into 1024 pieces mean-
ing large datasets could have a very large chunk size
which impacts random access performance (e.g. for
streaming video).

Another drawback of BitTorrent is due to the way
clients advertise and discover other peers in absence
of any protocol level privacy or trust. From a user
privacy standpoint, BitTorrent leaks what users are
accessing or attempting to access, and does not pro-
vide the same browsing privacy functions as systems
like SSL.

2.4 Kademlia Distributed Hash Table

Kademlia is a distributed hash table, a distributed
key/value store that can serve a similar purpose to
DNS servers but has no hard coded server addresses.
All clients in Kademlia are also servers. As long as
you know at least one address of another peer in the
network, you can ask them for the key you are trying
to find and they will either have it or give you some
other people to talk to that are more likely to have it.

2



If you don’t have an initial peer to talk to you, most
clients use a bootstrap server that randomly gives
you a peer in the network to start with. If the boot-
strap server goes down, the network still functions as
long as other methods can be used to bootstrap new
peers (such as sending them peer addresses through
side channels like how .torrent files include tracker
addresses to try in case Kademlia finds no peers).

Kademlia is distinct from previous DHT designs due
to its simplicity. It uses a very simple XOR operation
between two keys as its “distance” metric to decide
which peers are closer to the data being searched for.
On paper it seems like it wouldn’t work as it doesn’t
take into account things like ping speed or bandwidth.
Instead its design is very simple on purpose to mini-
mize the amount of control/gossip messages and to
minimize the amount of complexity required to im-
plement it. In practice Kademlia has been extremely
successful and is widely deployed as the “Mainline
DHT” for BitTorrent, with support in all popular
BitTorrent clients today.

Due to the simplicity in the original Kademlia design
a number of attacks such as DDOS and/or sybil have
been demonstrated. There are protocol extensions
(BEPs) which in certain cases mitigate the effects
of these attacks, such as BEP 44 which includes a
DDOS mitigation technique. Nonetheless anyone us-
ing Kademlia should be aware of the limitations.

2.5 Peer to Peer Streaming Peer Pro-
tocol (PPSPP)

PPSPP (IETF RFC 7574) is a protocol for live stream-
ing content over a peer to peer network. In it they
define a specific type of Merkle Tree that allows for
subsets of the hashes to be requested by a peer in
order to reduce the time-till-playback for end users.
BitTorrent for example transfers all hashes up front,
which is not suitable for live streaming.

Their Merkle trees are ordered using a scheme they
call “bin numbering”, which is a method for determin-
istically arranging an append-only log of leaf nodes
into an in-order layout tree where non-leaf nodes are

derived hashes. If you want to verify a specific node,
you only need to request its sibling’s hash and all its
uncle hashes. PPSPP is very concerned with reducing
round trip time and time-till-playback by allowing for
many kinds of optimizations, such as to pack as many
hashes into datagrams as possible when exchanging
tree information with peers.

Although PPSPP was designed with streaming video
in mind, the ability to request a subset of metadata
from a large and/or streaming dataset is very desirable
for many other types of datasets.

2.6 WebTorrent

With WebRTC browsers can now make peer to peer
connections directly to other browsers. BitTorrent
uses UDP sockets which aren’t available to browser
JavaScript, so can’t be used as-is on the Web.

WebTorrent implements the BitTorrent protocol in
JavaScript using WebRTC as the transport. This
includes the BitTorrent block exchange protocol as
well as the tracker protocol implemented in a way
that can enable hybrid nodes, talking simultaneously
to both BitTorrent and WebTorrent swarms (if a
client is capable of making both UDP sockets as well
as WebRTC sockets, such as Node.js). Trackers are
exposed to web clients over HTTP or WebSockets.

2.7 Inter-Planetary File System

IPFS also builds on many of the concepts from this
section and presents a new platform similar in scope
to the Web that has content integrity, peer to peer file
sharing, and data permanence baked in to their pro-
tocols. Whereas Dat is one application of these ideas
that is specifically focused on sharing version con-
trolled datasets but is agnostic to what platform it is
built on, IPFS goes lower level and abstracts network
protocols and naming systems so that any application
built on the Web can alternatively be built on IPFS
to inherit it’s properties, as long as their hyperlinks
can be expressed as content addressed addresses to

3

https://datatracker.ietf.org/doc/rfc7574/?include_text=1


the IPFS global Merkle DAG. The research and im-
plementations behind IPFS have coalesced many of
these ideas into a more accessible format.

2.8 Certificate Transparency/Digital
Registers

The UK Government Digital Service have developed
the concept of a register which they define as a digital
public ledger you can trust. In the UK government
registers are beginning to be piloted as a way to expose
essential open data sets in a way where consumers
can verify the data has not been tampered with, and
allows the data publishers to update their data sets
over time.

The design of registers was inspired by the infras-
tructure backing the Certificate Transparency project,
initated at Google, which provides a service on top
of SSL certificates that enables service providers to
write certificates to a distributed public ledger. Any-
one client or service provider can verify if a certificate
they received is in the ledger, which protects against
so called “rogue certificates”.

3. Design

Dat is a file sharing protocol that does not assume
a dataset is static or that the entire dataset will be
downloaded. The protocol is agnostic to the under-
lying transport e.g. you could implement Dat over
carrier pigeon. The key properties of the Dat design
are explained in this section.

• 1. Mirroring - Any participant in the network
can simultaneously share and consume data.

• 2. Content Integrity - Data and publisher
integrity is verified through use of signed
hashes of the content.

• 3. Parallel Replication - Subsets of the data
can be accessed from multiple peers simul-
taneously, improving transfer speeds.

• 4. Streaming Updates - Datasets can be up-
dated and distributed in real time to other
peers.

• 5. End To End Encryption - Dat employs
a capability system whereby anyone with a
Dat link can connect to the swarm, but the
link itself is a secure hash that is difficult to
guess.

3.1 Mirroring

Dat is a peer to peer protocol designed to exchange
pieces of a dataset amongst a swarm of peers. As
soon as a peer acquires their first piece of data in the
dataset they become a partial mirror for the dataset.
If someone else contacts them and needs the piece
they have, they can share it. This can happen si-
multaneously while the peer is still downloading the
pieces they want.

3.1.1 Source Discovery

An important aspect of mirroring is source discov-
ery, the techniques that peers use to find each other.
Source discovery means finding the IP and port of
data sources online that have a copy of that data you
are looking for. You can then connect to them and
begin exchanging data using the Dat file exchange
protocol, Hypercore. By using source discovery tech-
niques we are able to create a network where data
can be discovered even if the original data source
disappears.

Source discovery can happen over many kinds of net-
works, as long as you can model the following actions:

• join(key, [port]) - Begin performing regular
lookups on an interval for key. Specify port if
you want to announce that you share key as well.

• leave(key, [port]) - Stop looking for key.
Specify port to stop announcing that you share
key as well.

• foundpeer(key, ip, port) - Called when a
peer is found by a lookup

4



In the Dat implementation we implement the above
actions on top of three types of discovery networks:

• DNS name servers - An Internet standard mech-
anism for resolving keys to addresses

• Multicast DNS - Useful for discovering peers on
local networks

• Kademlia Mainline Distributed Hash Table - Zero
point of failure, increases probability of Dat work-
ing even if DNS servers are unreachable

Additional discovery networks can be implemented as
needed. We chose the above three as a starting point
to have a complementary mix of strategies to increase
the probability of source discovery.

Our implementation of peer discovery is called
discovery-channel. We also run a custom DNS server
that Dat clients use (in addition to specifying their
own if they need to), as well as a DHT bootstrap
server. These discovery servers are the only central-
ized infrastructure we need for Dat to work over the
Internet, but they are redundant, interchangeable,
never see the actual data being shared, anyone can
run their own and Dat will still work even if they all
are unavailable. If this happens discovery will just
be manual (e.g. manually sharing IP/ports). Every
data source that has a copy of the data also advertises
themselves across these discovery networks.

3.1.1.1 User Privacy

On the Web today, with SSL, there is a guarantee
that the traffic between your computer and the server
is private. As long as you trust the server to not leak
your logs, attackers who intercept your network traffic
will not be able to read the HTTP traffic exchanged
between you and the server. This is a fairly straight-
forward model as clients only have to trust a single
server for some domain.

There is an inherent tradeoff in peer to peer systems
of source discovery vs. user privacy. The more people
you ask for some data, the more people you trust
to keep what your asked for private. Our goal is to
have Dat be configurable in respect to this tradeoff to
allow application developers to meet their own privacy

guidelines.

It is up to client programs to make design decisions
around which discovery networks they trust. For
example if a Dat client decides to use the BitTorrent
DHT to discover peers, and they are searching for a
public Dat key with known contents, then because
of the privacy design of the BitTorrent DHT anyone
who can view that clients network traffic can find out
what content they are searching for.

A client could choose to only use discovery networks
with certain privacy guarantees. For example a client
could only connect to an approved list of sources that
they trust, similar to SSL. As long as they trust each
source, the encryption built into the Dat network
protocol will prevent the Dat key they are looking for
from being leaked.

3.1.2 Peer Connections

Up until this point we have just done searches to find
who has the data we need. Now that we know who
should talk to, we have to connect to them. Once we
have a duplex binary connection to a peer we then
layer on our own file sharing protocol on top, called
Hypercore.

In our implementation, we use either TCP, UTP,
WebSockets or WebRTC for the network connections.
UTP is nice because it is designed to not take up all
available bandwidth on a network (e.g. so that other
people sharing your wifi can still use the Internet).
WebSockets and WebRTC makes Dat work in modern
web browsers.

When we get the IP and port for a potential source
we try to connect using all available protocols and
hope one works. If one connects first, we abort the
other ones. If none connect, we try again until we
decide that source is offline or unavailable to use and
we stop trying to connect to them. Sources we are
able to connect to go into a list of known good sources,
so that if our Internet connection goes down we can
use that list to reconnect to our good sources again
quickly.

5

https://www.npmjs.com/package/dns-discovery
https://github.com/bittorrent/bootstrap-dht
https://github.com/mafintosh/hypercore
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Micro_Transport_Protocol


If we get a lot of potential sources we pick a handful at
random to try and connect to and keep the rest around
as additional sources to use later in case we decide
we need more sources. A lot of these are parameters
that we can tune for different scenarios later, but have
started with some best guesses as defaults.

The connection logic is implemented in a module
called discovery-swarm. This builds on discovery-
channel and adds connection establishment, manage-
ment and statistics. You can see stats like how many
sources are currently connected, how many good and
bad behaving sources you’ve talked to, and it automat-
ically handles connecting and reconnecting to sources
for you. Our UTP support is implemented in the
module utp-native.

So now we have found data sources, connected to
them, but we haven’t yet figured out if they actually
have the data we need. This is where our file transfer
protocol Hypercore comes in. This is explained in a
later section.

Peer connections types are outside the scope of the
Dat protocol, but in the Dat implementation we make
a best effort to make as many successful connections
using our default types as possible. This means em-
ploying peer to peer connection techniques like UDP
hole punching [?]. Our approach for UDP hole punch-
ing is to use a central known hole punching server
which is accessible on the public Internet.

3.1.2.1 Hole Punching

When using raw UDP sockets in our implementation
we re-use our custom DNS server by adding to it spe-
cial functionality to facilitate peer message exchange
for the purpose of hole punching.

In a scenario where two peers A and B want to connect,
and both know the central server, this is how we
perform UDP hole punching:

1. Peer A creates a local UDP socket and messages
the central server that it is interested in connect-
ing to people.

2. Central server messages Peer A back with a token
that is a hash(Peer A's remote IP + a local

secret). The UDP packet contains the remote
IP.

3. Peer A messages the central server with the token
(this way you cannot spoof your IP and DDOS a
remote peer)

4. Peer B does the same.
5. When the central server receives Peer B’s message

that it wants to connect to peers it forwards Peer
B’s message to Peer A and Peer A’s message to
Peer B.

6. Both peers now send a message to each other on
their public IP and port. If UDP hole punching
is supported by the routers of both peers at least
one of the messages should get through.

7. At this point we reuse the UDP socket to run
UTP on top to get a streaming reliable interface.

3.2 Content Integrity

Content integrity means being able to verify the data
you received is the exact same version of the data that
you expected. This is imporant in a distributed system
as this mechanism will catch incorrect data sent by
bad peers. It also has implications for reproducibility
as it lets you refer to a specific version of a dataset.

A common issue in data analysis is when data changes
but the link to the data remains the same. For exam-
ple, one day a file called data.zip might change, but a
typical HTTP link to the file does not include a hash
of the content, or provide a way to get updated meta-
data, so clients that only have the HTTP link have no
way to check if the file changed without downloading
the entire file again. Referring to a file by the hash
of its content is called content addressability, and lets
users not only verify that the data they receive is the
version of the data they want, but also lets people cite
specific versions of the data by referring to a specific
hash.

Hypercore and Hyperdrive

Data storage and content integrity in Dat is im-
plemented in a module called Hypercore. Given a
stream of binary data, Hypercore splits the stream

6

https://www.npmjs.com/package/discovery-swarm
https://www.npmjs.com/package/utp-native
https://www.npmjs.com/package/hypercore
https://npmjs.org/hypercore


into chunks using Rabin fingerprints, hashes each
chunk, and arranges the hashes in a specific type of
Merkle tree that allows for certain replication prop-
erties. In addition to providing a content addressing
system, Hypercore also provides a network protocol
for exchanging chunks with peers. The defining fea-
ture of Hypercore is its ability to fully or partially
synchronize streams in a distributed setting even if
the stream is being appended to.

Hypercore is agnostic to the format of the input data,
it operates on any stream of binary data. For the
Dat use case of synchronizing datasets we wrote and
use a file system module on top of Hypercore called
Hyperdrive. We have a layered abstraction so that
if someone wishes they can use Hypercore directly
to have full control over how they model their data.
Hyperdrive works well when your data can be repre-
sented as files on a filesystem, which is our main use
case with Dat.

Registers

Central to the design of Hypercore is the notion of a
register. This is a binary append-only stream (Kappa
architecture) whose contents are cryptographically
hashed and signed and therefore can be trusted. Hy-
percore lets you create many registers, and replicates
them when synchronizing with another peer.

Registers are a way of encoding a Merkle tree that we
use to efficiently replicate data over a network. When
generating the Merkle tree, hashes are positioned by a
scheme called binary interval numbering or just simply
bin numbering. This is just a specific, deterministic
way of laying out the nodes in a tree. For example a
tree with 7 nodes will always be arranged like this:

0
1

2
3

4
5

6

In our use case, the hashes of the actual content are

always even numbers, at the wide end of the tree. So
the above tree had four original values that become
the even numbers:

value0 -> 0
value1 -> 2
value2 -> 4
value3 -> 6

All odd hashes are derived by hashing the two child
nodes, e.g. given hash0 is hash(value0) and hash2
is hash(value1), hash1 is hash(hash0 + hash2).

A register contains two pieces of information:

1. List of binary values: [value0, value1, value2, . . . ]
2. List of hashes for the Merkle tree [hash0, hash1,

hash2, . . . ]

The register itself interleaves these two lists such that
the indexes (position) in the register are the same as
the bin numbers from the Merkle tree. For example
here is a register with three entries in pseudocode:

var feed = [{
hash: sha256(value + size),
size: value.length
value: <some buffer>

}, {
hash: sha256(feed[0].hash + feed[2].hash + size),
size: feed[0].size + feed[1].size

}, {
hash: sha256(value + size),
size: value.length
value: <some buffer>

}, {
hash: sha256(feed[1].hash + feed[5].hash + size),
size: feed[1].size + feed[5].size

}]

Registers can also be signed with a private key, al-
lowing anyone with the corresponding public key to
verify that new entries to the register were created by
a holder of the private key. More on this in section
3.4.

7



3.3 Parallel Replication

Hypercore provides a replication protocol so two peers
can communicate over a stateless messaging channel
to discover and exchange data. Once you have re-
ceived the register metadata, you can make individual
requests for chunks from any peer you are connected
to. This allows clients to parallelize data requests
across the entire pool of peers they have established
connections with.

Messages are encoded using Protocol Buffers. The
protocol has nine message types:

Open

This should be the first message sent and is also the
only message without a type. It looks like this:

message Open {
required bytes feed = 1;
required bytes nonce = 2;

}

The feed should be set to the discovery key as speci-
fied above. The nonce should be set to 24 bytes of high
entropy random data. When running in encrypted
mode this is the only message sent unencrypted.

0 Handshake

This message is sent after sending an open message
so it will be encrypted and we won’t expose our peer
id to a third party.

message Handshake {
required bytes id = 1;
repeated string extensions = 2;

}

1 Have

Have messages give the other peer information about
which blocks of data you have.

message Have {
required uint64 start = 1;
optional uint64 end = 2;
optional bytes bitfield = 3;

}

You can use start and end to represent a range of
data block bin numbers. If using a bitfield it should be
encoded using a run length encoding described above.
It is a good idea to send a have message soon as
possible if you have blocks to share to reduce latency.

2 Want

You can send a have message to give the other peer
information about which blocks of data you want to
have. It has type 2.

message Want {
required uint64 start = 1;
optional uint64 end = 2;

}

You should only send the want message if you are
interested in a section of the feed that the other peer
has not told you about.

3 Request

Send this message to request a block of data. You can
request a block by block index or byte offset. If you
are only interested in the hash of a block you can set
the hash property to true. The nodes property can
be set to a tree digest of the tree nodes you already
have for this block or byte range. A request message
has type 3.

message Request {
optional uint64 block = 1;
optional uint64 bytes = 2;
optional bool hash = 3;
optional uint64 nodes = 4;

}

8



4 Data

Send a block of data to the other peer. You can use
this message to reply to a request or optimistically
send other blocks of data to the other client. It has
type 4.

message Data {
message Node {

required uint64 index = 1;
required uint64 size = 2;
required bytes hash = 3;

}

required uint64 block = 1;
optional bytes value = 2;
repeated Node nodes = 3;
optional bytes signature = 4;

}

5 Cancel

Cancel a previous sent request. It has type 5.

message Cancel {
optional uint64 block = 1;
optional uint64 bytes = 2;

}

6 Pause

An empty message that tells the other peer that they
should stop requesting new blocks of data. It has type
6.

7 Resume

An empty message that tells the other peer that they
can continue requesting new blocks of data. It has
type 7.

3.4 Streaming Updates

3.5 Secure Metadata

9


	Abstract
	1. Introduction
	2. Inspiration
	2.1 Git
	2.2 LBFS
	2.3 BitTorrent
	2.4 Kademlia Distributed Hash Table
	2.5 Peer to Peer Streaming Peer Protocol (PPSPP)
	2.6 WebTorrent
	2.7 Inter-Planetary File System
	2.8 Certificate Transparency/Digital Registers

	3. Design
	3.1 Mirroring
	3.1.1 Source Discovery
	3.1.2 Peer Connections

	3.2 Content Integrity
	Hypercore and Hyperdrive
	Registers

	3.3 Parallel Replication
	0 Handshake
	1 Have
	2 Want
	3 Request
	4 Data
	5 Cancel
	6 Pause
	7 Resume

	3.4 Streaming Updates
	3.5 Secure Metadata


