
Lecture 4 - Complex Differentiation and Integration

Lucas Culler and Josh Batson

1 Force and Work

Consider a particle moving in a 2-dimensional force field

F = (P,Q).

How much work do we need to do to move it along a path γ(t) = (x(t), y(t))? By definition, the amount of
work done is given by the following line integral:

W = −
∫
γ

F · dr = −
∫
γ

Pdx+Qdy

Let’s recall the mathematical definition of this integral.

Definition 1. Let D ⊂ R2 be a domain. A 1-form on D is an expression

Pdx+Qdy

where P and Q are (complex valued) functions on D.

Given a 1-form Pdx+Qdy and a path γ(t) in the region U , we define:∫
γ

Pdx+Qdy =
∫ b

a

(
P (γ(t))

dx

dt
+Q(γ(t))

dy

dt

)
dt

Often in physics, the force field is given by negative gradient of a potential energy function:

F = −(
∂U

∂x
,
∂U

∂y
)

Such a force is usually called “conservative”, for reasons we’ll see in a minute.

Example 1. A particle moving in a gravitational force field near the surface of the earth experiences a force:

F = (0,−mg)

where m is the mass of the particle and g is the Earth’s gravitational constant. In this case, the potential
energy is given by

U(x, y) = mgy

Example 2. For a harmonic oscillator whose equilibrium point is located at the origin, the force field is

F = (−kx,−ky)

The potential energy for a harmonic oscillator is given by

U(x, y) =
1
2
kx2 +

1
2
ky2
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In the case of a particle moving in a conservative force field, the work is given by

W = −
∫
γ

∂U

∂x
dx+

∂U

∂y
dy

There is a special notation for the 1-form appearing in the above integral.

Definition 2. The differential, or total derivative of a function U is the 1-form

dU =
∂U

∂x
dx+

∂U

∂y
dy

Note that this definition is consistent with the use of the symbols dx and dy, because these are simply the
differentials of the coordinate functions x and y. Some formal properties of differentials are collected below.
They are left as exercises for the reader.

• d(f + g) = df + dg

• d(fg) = fdg + gdf

• The differential of a constant function is 0.

• d(fn) = nfn−1df

Note that differentials behave more or less exactly like derivatives. They are just a pleasant notation for
talking about the partial derivatives of a function of several variables.

The reason why conservative forces are useful is that the work done by them can be computed using the
Fundamental Theorem of Calculus. The idea is that the potential energy function behaves like an anti-
derivative for the force field.

Theorem. (Fundamental Theorem of Calculus for Line Integrals) Let U be a complex-valued function on a
domain D ⊂ R2. Let γ : [a, b]→ D be a path, and let p = γ(a), q = γ(b). Then∫

γ

dU = U(q)− U(p)

Proof. By definition, ∫
γ

dU =
∫ b

a

∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
dt

Let f(t) = U(γ(t)). Then by the chain rule, we have∫
γ

dU =
∫ b

a

df

dt
dt

By the usual fundamental theorem of calculus,∫
γ

df = f(b)− f(a) = U(q)− U(p)

So, to figure out the work done by a conservative force field, one only needs to take the difference between
the endpoints of the path:

W = −
∫
γ

F · dr =
∫
γ

dU = U(q)− U(p)
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Consider the case when p = q, i.e. when the path γ returns to its original position. In this case,

W = U(p)− U(p) = 0

So, no work is done as long as the particle returns to its original position. This is the reason for the term
“conservative” - energy is conserved along paths that return to their original configuration. Such a system
cannot have dissipative forces like friction, because such a force removes energy from the particle no matter
which path is taken.

Paths which returning to their original positions have a special name in mathematics - they are called “closed
contours” (or “closed paths”).

2 Winding Numbers

Sometimes one wants to take differentials of things which are not quite functions, but are rather multivalued
functions. For example, consider the “function” θ(x, y), which takes a vector (x, y) and returns the angle
that it makes with the x-axis. We would like to say that

θ(0, 1) =
π

2

θ(−1,−1) =
5π
4

But we might equally well say that

θ(0, 1) =
5π
2

θ(−1,−1) =
−3π

4
In fact, any angle is only defined up to a multiple of 2π, so we should really say something like

θ(0, 1) =
π

2
+ 2πk

θ(−1,−1) =
−3π

4
+ 2πk

where the number k is meant to be an undetermined integer. Hence θ(x, y) is properly thought of as a
multi-valued function.

In fact it is impossible to define a continuous function θ(x, y). However, if such a function existed then we
could compute its differential. Here’s how we do it. First express x and y in polar coordinates and compute
their differentials.

x = r cos θ =⇒ dx = cos θdr − r sin θdθ

y = r sin θ =⇒ dy = sin θdr + r cos θdθ

We can then solve for dθ as follows. First multiple the top and bottom equations by appropriate constants
and subtract to remove the dr terms.

cos θdy − sin θdx = rdθ

Then solve for dθ in terms of x and y and their differentials:

dθ =
r cos θ
r2

dy − r sin θ
r2

dx =
xdy − ydx
x2 + y2

If you like, you can take this as the definition of dθ as a 1-form. Note that it is only defined on the punctured
plane A = R2 \ {0}, because it has a singularity at the origin.
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Now suppose we have a path γ(t) in A. If γ is given by

γ(t) = r(t)eiθ(t)

for some smooth, real-valued functions r(t) and θ(t), then we will have∫
γ

dθ = θ(t1)− θ(t0)

So, integrating dθ measures the total angle passed through by the path γ(t). As a consequence, if γ is a
closed contour, then the integral must be an integral multiple of 2π!

Definition 3. Let A = R2 \ {0} and let γ be a closed contour in A. We define the winding number of γ
around the point 0 as follows:

w(γ, 0) =
1

2π

∫
γ

dθ

Obviously, an analogous definition applies if we puncture the plane at a point other than the origin, but then
we must define dθ differently. In general, if p = (x0, y0) is a point in the plane and γ is a closed contour not
passing through p = (x0, y0), then we can define

w(γ, p) =
1

2π

∫
γ

(x− x0)dy − (y − y0)dx
(x− x0)2 + (y − y0)2

Intuitively, the winding number is the number of times that the contour wraps around the point p. This can
usually be done by visually examining the contour, but it is comforting to know that it can also be done by
evaluating an integral.

3 Visualizing dθ

The best way to think about multi-valued functions is to think about their graphs. For example, the real
variable function

f(x) =
√
x

takes two values for any positive value of x, namely the positive and negative square roots. Its “graph”
therefore looks like a sideways parabola.

What is the graph of the function θ(x, y)? It looks like a helical “parking garage” with infinitely many levels!
(INSERT PICTURE)

How should we think about integrating dθ?. In general, if we have a potential function U , its graph will be
some surface lying over the x− y plane. If we want to integrate dU along a path γ, we should “lift” the path
γ to a path on this surface. As we move along this path, our height at time t is the value of the integral
from t0 to t.

So, when we’re integrating dθ along a path γ, we should think of continuously lifting our path to an infinite
parking garage instead of a single-sheeted surface. If we go around the origin once, then we find ourself “one
level up” in the parking garage (or one level down, depending on whether we went clockwise or counter-
clockwise). The winding number of a closed contour is the number of levels you go up as you traverse the
contour.

4 Holomorphic Differentials and Integrals

Suppose that f is a holomorphic on a disk D. Then it has a power series expansion

f =
∞∑
n=0

anz
n
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Taking the differential, we get:

df =
∞∑
n=0

and(zn) = (
∞∑
n=0

nanz
n−1)dz

Note that the symbol dz is really just the differential of the function

z(x, y) = x+ iy

In terms of dx and dy, it is given by:
dz = dx+ idy

It makes sense to call the function in front of dz the “derivative” of the holomorphic function f . We write
this as follows:

df = f ′(z)dz =
df

dz
dz

This gives us a holomorphic function f ′(z) which is defined everywhere that f is. We can also define
second, third, and higher order derivatives of holomorphic functions. Notice that any holomorphic function
automatically has infinitely many derivatives.

An interesting fact is that holomorphic functions are characterized by the property that their differentials
are proportional to dz.

Proposition 1. Let D ⊂ C be a domain. A function f : D → C is holomorphic if and only if there exists a
function g such that df = gdz. In this case, the function g is holomorphic as well.

Proof. It is convenient to introduce another differential form

dz = dx− idy

It is then easy to check that

df =
1
2

(
∂f

∂x
− i∂f

∂y

)
dz +

1
2

(
∂f

∂x
+ i

∂f

∂y

)
dz

and by some linear algebra this expression is unique. Thus df is proportional to dz if and only if the second
term vanishes, i.e. if and only if f satisfies the Cauchy-Riemann equation

∂f

∂x
+ i

∂f

∂y
= 0

Anyway, differentiation of holomorphic functions is quite easy. You just write out a power series expansions
and differentiate term-by-term. Anti-differentiation is also easy, provided the domain of definition for f is a
disk. An anti-derivative for the function f above is

F =
∞∑
n=0

an
zn+1

n+ 1

Definition 4. Let f be a holomorphic function defined on a domain D ⊂ C. We say that f has a primitive
(or anti-derivative) if there is another holomorphic function F such that

dF = f(z)dz

Theorem. Let f be a holomorphic function on a domain D ⊂ C, and suppose that f has a primitive F on
D. Then for any closed contour γ in D, ∫

γ

f(z)dz = 0

Corollary 1. (Cauchy’s Theorem, simple version) Let f be a holomorphic function on a disk D, and let γ
be a closed contour in D. Then ∫

γ

f(z)dz = 0
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5 The Residue Theorem

In general domains, not every holomorphic function has a primitive.

Lemma 1. Let A = C \ 0. Then the function f = 1
z is holomorphic on A but does not have a primitive on

A.

Proof. Suppose it did have a primitive F . We know that F has a Laurent series:

F =
∑
n∈Z

anz
n

Taking the differential of this, we get:

dF =
∑
n<0

nanz
n−1 +

∑
n>0

nanz
n−1

There is no 1
z term anywhere in this series, so no matter how we choose the constants an we can’t arrange

that
dF =

dz

z

Therefore, f does not have a primitive.

Note that the above argument actually shows that a function

f(z) =
∞∑

n=−∞
anz

n

will have a primitive as long as a−1 = 0.

Corollary 2. Let f be any holomorphic function on an annulus A centered at the origin. Then there is a
holomorphic function F such that

f(z)dz = dF + a−1
dz

z

The constant a−1 has a special name:

Definition 5. Let f be a holomorphic function on an annulus centered at a point z0. Then it has a Laurent
expansion

f(z) =
∞∑

n=−∞
an(z − z0)n

we define the residue of f at z0 to be the coefficient of 1
z−z0 :

Res(f, z0) = a−1

There is actually a slicker way to see that 1
z can’t have a primitive, which makes use of the fundamental

theorem of calculus. Write the function z in polar coordinates as follows:

z = reiθ

Then compute its differential in terms of r and θ:

dz = eiθdr + ireiθdθ
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Dividing on the left by z and on the right by reiθ, we get:

dz

z
=
dr

r
+ idθ = d(log r) + idθ

Now let γ be a closed contour that starts an ends at a point r0eiθ0 . Then∫
γ

dr

r
= log r0 − log r0 = 0

∫
γ

idθ = 2πiw(γ, 0)

Putting this together, we see that ∫
γ

dz

z
= 2πiw(γ, 0)

If 1
z had a primitive then its integral around any closed contour would be zero. Since the integral is not zero

for paths with nonzero winding number, we are forced to conclude that 1
z does not have a primitive.

Theorem. (Residue Theorem, simple version) Let f be a holomorphic function on an annulus centered at
z0, and let γ be a closed contour in this annulus. Then

1
2πi

∫
γ

f(z)dz = Res(f, z0)w(γ, z0)

Proof. We know that there is a function F such that

f(z)dz = dF + Res(f, z0)
dz

z

Therefore,
1

2πi

∫
γ

f(z)dz =
1

2πi

∫
γ

dF +
Res(f, z0)

2πi

∫
γ

dz

z
= Res(f, z0)w(γ, z0)

In the case of a holomorphic function on a disk, we have seen that it has no negative terms in its laurent
expansion, therefore its residue is zero, and we recover Cauchy’s theorem as a special case.
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