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1 Differentiation and Convergence of Power Series

If one isn’t concerned about convergence, it is easy to find the fourier expansion for the derivative of a
function. Suppose that

f(x) =
∑
n∈Z

ane
inx.

If we differentiate the sum term-by-term, we get

f ′(x) =
∑
n∈Z

inane
inx

So we see that the n-th fourier coefficient gets multiplied by a factor of in.

There is another way to see this, however, using the formula for the fourier coefficients:

an =
1

2π

∫ 2π

0

f(x)e−inxdx

Let bn be the n-th fourier coefficient of f ′(x). Then

bn =
1

2π

∫ 2π

0

f ′(x)e−inxdx

Since the function f is periodic, there is no boundary term when we integrate by parts. Hence:

bn = − 1
2π

∫ 2π

0

f(x)
(
−ine−inx

)
dx = inan

The advantage of the second version is that it allows us to prove that smooth functions have convergent
fourier series. Suppose that f ′′(x) is a continuous function. Let an be the fourier coefficients of f and let cn
be the fourier coefficients of f ′′(x). Then

cn = −n2an

On the other hand, since f ′′(x) is continuous, its absolute value is bounded above by some constant M.
Therefore,

|cn| = |
1

2π

∫ 2π

0

f ′′(x)e−inxdx| ≤ 1
2π

∫ 2π

0

Mdx = M

So the numbers |cn| are bounded above by M as well. To prove that the fourier series converges, we are
going to consider what happens if we cut the Fourier expansion off at some finite stage

N∑
n=−N

ane
inθ
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How much does this finite sum differ from the infinite sum? Well, we have an upper bound on the absolute
value of the “tail” or remainder of the series:

|
∑
|n|≥N

ane
inx| ≤

∑
|n|≥N

|an| = M
∑
|n|≥N

1
n2

Now, the series
∑∞
n=1

1
n2 converges by the integral test. Hence its tails get arbitrarily small as N tends

to infinity. But this implies that the tails of the fourier series become arbitrarily small as N tends to ∞.
Therefore, the fourier series converges as well.

So, any sufficiently differentiable function will have a convergent fourier series. In fact, one can refine
the arguments above to get even better convergence criteria, but since we are assuming all functions to be
smooth we have no need for such analysis.

2 The Heat Equation

Suppose we have a metal ring, and we heat it up in some irregular manner, so that certain parts of it are
hotter than others. Assume the ring is placed in some sort of insulating material, so that no heat is lost to
the environment. How does the temperature at different points in the ring change over time? To answer this
question, suppose that the temperature at time t and at an angle θ relative to a fixed point on the ring is
given by a function u(t, θ). Then the time evolution of u can be modelled by a partial differential equation,
called the “heat equation”:

∂u

∂t
= κ

∂2u

∂θ2

where κ is a constant depending on the size and physical properties of the ring. As it turns out, this equation
is what motivated Fourier to invent Fourier series, and indeed they are still the best way to solve it. His
method goes like this. First, expand u as a Fourier series with time-dependent coefficients:

u(θ, t) =
∑
n∈Z

An(t)einθ

Note that the coefficients An can be complex, even though u(θ, t) is assumed to be real. Next, substitute
this expression into the heat equation:∑

n∈Z

dAn
dt

einθ =
∑
n∈Z

Anκ(in)2einθ

Since Fourier series are unique, we can set these two expressions equal term by term, obtaining (infinitely
many!) ordinary differential equations for the coefficients An:

dAn
dt

= −κn2An

Solving these equations gives us:
An(t) = cne

−κn2t

for some constants cn. Substituting back in, we get a formula for u:

u(θ, t) =
∑
n∈Z

cne
−κn2t+inθ

So we are left to determine the constants cn. How can we do this? Well, setting t = 0, we get

u(θ, 0) =
∑
n∈Z

cne
inθ
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So if we know the initial temperature distribution then we can find the constants cn by taking its Fourier
transform:

cn =
1

2π

∫ 2π

0

u(θ, 0)e−inθdθ

Thus Fourier series provide us with a thorough, systematic way to solve the heat equation with periodic
boundary conditions.

What does this solution tell us physically? Taking the limit as t→∞ shows that the temperature of the
ring approachs a constant, namely c0. Moreover, looking at the constants in the exponentials we see that
the higher Fourier modes die off much quicker than the lower modes. So rapid oscillations get smoothed out
rather quickly, whereas more modest oscillations will take a longer time to reach equilibrium.

One peculiar feature of the heat equation is that it cannot be solved infinitely far back in time. The
reason for this is that the Fourier series describing the solution ceases to be convergent when the coefficients
grow too large. However, our argument shows that a solution does exist for all positive times, and this
solution is uniquely determined by the initial conditions.

3 The Wave Equation

Now suppose we take our metal ring and strike it with a hammer. The ring will then vibrate, meaning that
it will be displaced from its original shape, and the displacement will change with time, oscillating back and
forth, presumably at a fairly high frequency. The displacement φ(θ, t) of the ring can be modelled (assuming
dissipative effects are negligible) by the following partial differential equation, called the “wave equation”:

∂2φ

∂t2
= c2

∂2φ

∂θ2

where c is some constant depending on things like the density of the ring and its radius. Let’s again use
Fourier series to solve this equation. Since the displacement is periodic, we can write it as follows:

φ(θ, t) =
∑
n∈Z

An(t)einθ

where An are complex valued functions. We can then plug this into the equation above, obtaining:∑
n∈Z

d2An
dt2

einθ =
∑
n∈Z

An(t)c2(in)2einθ

Setting coefficients equal to one another we obtain:

d2An
dt2

= −c2n2An

In this case, the ordinary differential equation has two independent solutions:

An(t) = ane
inct + bne

−inct

so that the full solution is given by:

φ(θ, t) =
∑
n∈Z

ane
in(θ+ct) +

∑
n∈Z

bne
in(θ−ct)

So we see that φ can be written as a sum of two arbitrary functions

φ(θ, t) = f(θ + ct) + g(θ − ct)
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which correspond physically to waves of displacement propogating in the clockwise and counterclockwise
directions.

Even though we can eliminate Fourier series from our answer at the end, the Fourier decomposition of
the wave is still interesting from a physical point of view. In particular, note that the function

φ(θ, t) = ein(θ+ct)

returns to its original configuration whenever ct is a multiple of 2π
n . So, the sound waves emitted by the ring

will have frequencies
νn =

nc

2π
Thus there will be a lowest or fundamental frequency, with overtones occuring at integer multiples of that
frequency. Of course, we should really have allowed the ring to have a circumference L other than 2π, in
which case the frequencies would be

νn =
nc

L

This shows that if we make the ring wider, then its fundamental frequency decreases. In other words, the
note we hear when we strike it has a lower pitch. Of course, this phenomenon is familiar from our experiences
with musical instruments, and so on.

4 The Cauchy-Riemann Equations

Now that we have seen how to use Fourier series to solve partial differential equations of physical importance,
let’s try to apply the same method to the case we really care about, the Cauchy-Riemann equation. Recall
that this equation is:

∂f

∂x
= −i∂f

∂y

First let’s try to find all solutions that are periodic in the x variable. We proceed exactly as before. First
we write f as a Fourier series in x:

f(x, y) =
∑
n∈Z

An(y)einx

Then we use the Cauchy-Riemann equations to get ordinary differential equations satisfied by the functions
An(y):

inAn = −idAn
dy

Solving these, we get:
An = cne

−ny

and therefore f is given by
f(x, y) =

∑
n∈Z

cne
−ny+inx =

∑
n∈Z

cne
in(x+iy)

This can be expressed in a form that makes it evidently holomorphic:

f(z) =
∑
n∈Z

cne
inz

So, periodic holomorphic functions have Fourier series in much the same way as periodic real-valued functions
have Fourier series.

Note that the Fourier series of a periodic holomorphic function will only converge when y is constrained to
lie in some interval, because the positive Fourier coefficients increase exponentially with y and the negative
Fourier coefficients decrease exponentially with y. We will exploit this momentarily when we prove the
Riemann extension theorem and the Liouville theorem.
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Theorem. Let f be a holomorphic function defined on an annulus A = {z ∈ C : r1 < |z| < r2}. Then f is
given on A by a Laurent series (that is, a power series with both positive and negative powers):

f(z) =
∑
n∈Z

cnz
n

Moreover, the coefficients cn are uniquely determined by the function f .

Proof. The idea is to use “logarithmic coordinates”. More concretely, consider the infinite horizontal strip

S = (−∞,∞)× (log r1, log r2)

There is a conformal map g : S → A given by z 7→ eiz. Given any holomorphic function f on A, we therefore
get a periodic holomorphic function f ◦ g on S. By the computation above, f ◦ g can be written as follows:

f(g(z)) =
∑
n∈Z

cne
inz =

∑
n∈Z

cng(z)n

for some constants cn. Setting w = g(z), we get:

f(w) =
∑
n∈Z

cnw
n

for all w ∈ A, as claimed.

We often want to know about holomorphic functions on a disk rather than an annulus. The following
result says that in this case the laurent series expansion has only nonnegative powers of z.

Theorem. (Riemann Extension Theorem) Let f be a holomorphic function defined on a punctured disk
D∗ = {z ∈ C : 0 < |z| < r}. Suppose moreover that f is bounded by some constant, i.e. |f(z)| < M for all
z ∈ D∗. Then f is given by a power series

f(z) =
∑
n≥0

cnz
n

In particular, we can use the power series expansion to extend f to a holomorphic function defined on the
entire disk D, and this extension is unique.

Proof. The preimage of D∗ under eiz is an upper half-space H = {z = x + iy : y > − log r} . Using the
standard formula for Fourier coefficients, we get:

cne
−ny =

1
2π

∫ 2π

0

f(x+ iy)e−inxdx

So if f is bounded by a constant M , then we get:

|cne−ny| ≤M

for all y > log r. Hence if n is negative, cn must be zero, which shows that the Laurent expansion of f only
has nonnegative terms.

Corollary 1. Any holomorphic function f defined on an open disk D has a power series expansion valid on
that disk:

f(z) =
∑
n≥0

cnz
n

Corollary 2. (Liouville’s Theorem) Any bounded, holomorphic function defined on the entire complex plane
is constant.
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Proof. Proceeding as in the proof of the Riemann extension theorem, we see that for every n ∈ Z we must
have

|cne−ny| ≤M

for some constant M . Since the expression on the left gets arbitrarily large when y → ±∞, we must have
cn = 0 for all nonzero n. Therefore, f is constant.
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