
LECTURE 2

1. Outline

Fourier decompositions of periodic functions.

• Why is the Fourier decomposition possible?
– cardinality: how many functions are there I = [−π, π] → R? (ℵ2,

a real numbers worth of real numbers) Continuous? (ℵ1 a natural
numbers worth of real numbers) Differentiable?

– How can we represent functions as lists of numbers, in such a way
that simple/important/common functions have simple/short represen-
tations?

– Record values at points, linear interpolate/spline.
∗ simple functions require as much data as terribly complex ones.

– Polynomial approx
∗ but simple reps of polynomials aren’t the simplest functions,

especially if we have a periodic input. sinx should be simple,
not x2.

– Trigonometric approx
∗
∑
bn cosnx+ cn sinnx

– View the space of functions as a vector space (adding coordinate-wise
in linear rep, polynomial rep, trigonometric rep)
∗ looking for a basis.

• Why is the Fouier decomposition plausible?
– sinusoids form an algebra, so we can get products

∗ use double angle formulas, any other ideas you have to express
sin2 x = (1− cos 2x)/2, sin 2x cosx as sums of sinnx and cosnx.
∗ to prove this, helps to 1

2 (einx + e−inx) = cosx and 1
2i (e

inx −
e−inx) = sinx. Allow ourself to have complex coefficients.

– shifted sines: sin(x+ π/3) = 1
2 sinx+

√
3

2 cosx
– Can get a Dirac delta-ish function, with a single spike in one place.

ideas?
∗ first try to center it at π. sin2N x has two (positive) peaks, add

sin2N+1 x to keep just one.
∗ or

√
n
4π

(
1+cos x

2

)n to make it positive first.
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• Why does the Fourier decomposition work?
– okay, so we can get all the products of sines and cosines, shifted ver-

sions, etc. but why can we approximate/decompose all periodic func-
tions?

– BASIS VECTORS:

fn =
1√
2π
einx

– INNER PRODUCT: need a formula to compute coefficients. in finite
dim geometry, use dot product to get coords: e1-coord is v • e1. What
is the appropriate notion of dot product for functions? Called the
L2-norm. For f, g : I → R, define

〈f, g〉 :=
ˆ π

−π
fgdx

Why is this good? Well, when you dot a function with itself, you
should get its magnitude, which I’ll call the ENERGY of f :

‖f‖2 := 〈f, f〉 =
ˆ π

−π
|f |2dx

The only function with 0 energy is the 0 function. Triangle inequality
from the same for regular absolute value. Also, dot product should be
linear in each input, which this integral is.
∗ For f, g : I → C, add complex conjugation:

〈f, g〉 :=
ˆ π

−π
fḡdx.

– Our basis vectors are ORTHONORMAL:

〈fn, fm〉 =
1

2π

ˆ
einxe−imxdx =

1
2π

ˆ
ei(n−m)xdx =

{
1 if n = m

0 otherwise

∗ If we were right and f =
∑
anfn, then 〈f, fm〉 =

∑
an 〈fn, fm〉 =

am. So we can find the fourier components of f via integration:

am = 〈f, fm〉 =
1√
2π

ˆ π

−π
fe−imxdx.

∗ Because of Dirac delta approx, if f is continuous, periodic, and
orthogonal to the span of the (fn), then f = 0!
∗ PROTOTHEOREM: If

∑
anfn is a function, then f −

∑
anfn

is too, and is orthogonal to thes pan of the (fn) so zero.
∗ But the sum might not converge, if we’re handed a function f

and compute all the an, is it the case that f = 1√
2π

∑
ane

inx?
We don’t know anything about the ai. We know something:

0 ≤
〈
f −

∑
anfn, f −

∑
anfn

〉
= |f |2 − 2

∑
|an|2 +

∑
|an|2

Well, do the partial sums approximate f? Leaving out something
about Cauchy, we can compute the norm of

f −
N∑

n=−N
anfn = |f |2 −

N∑
n=−N

|an|2.
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• Why is the Fourier decomposition useful?
– interaction with differentiation. If f =

∑
ane

inx, then f ′(x) =
∑
inane

inx;
an  inan, no limits necessary!

– C2 gives pointwise convergence.
∗ Bessel for f ′′ gives an < 1/n2 gives uniform convergence to a

function, and we can use above.

Theorem. If f : I → C is a smooth, periodic function, then f =
∑
ane

inx for
some constants an ∈ C, and

ˆ π

π

|f |2 dx =
∑
|an|2 .

Fourier

• hilbert space description: periodic functions form an infinite-dimensional
vector space. the set of square-integrable ones, though, have a countable
basis (!) given by
– question: how many functions are there on S1? How about if we ask

them to be continuous? Differentiable? Integrable? Square integrable?
• Daniel Bernulli noticed, about 1750, in his study of the acoustic problem of

vibrating strings, that the general vibration of a string could be represetned
by the superposition of those sine vibrations which corresponded to the
fundamental tone and the overtones. The development into a trigonometric
series of the function which represents the form of the string.

• fourier had the balls to believe
• sines, cosines, and sums provide examples of periodic functions

– even sin2 x = (1− cos 2x)/2
• fourier decomposition: any function can be approximated arbitrarily well

by a sum of sines and cosines
– f =

∑
an sin(nx) + bn cos(nx) only positive n since cos is even, sin is

odd
– but sines and cosines are real and imaginary parts of complex numbers,

we can write
–

cosx =
eix + e−ix

2
and sinx =

eix − e−ix

2i

– They form an algebra!
• interaction with differentiation

– nice to have an orthonormal basis, so you can use coordinates and
inner products will be coordinate-wise dot products

Proposition 1. The set B = {sinnx, cosnx}n=0,1,2,... forms a complete basis for
the Hilbert space L2[−π, π].

Proof. First, we construct a test function in the span of B which has a sharp spike
at one point (more than 2/3 of its mass in an arbitrarily small window). Consider

gn(x) =
√

n

4π

(
1 + cosx

2

)n
.
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Note that gn is everywhere positive, with a peak at 0. For n large,
´
gn ' 1.

And
ˆ 1/

√
n

−1/
√
n

gn →n→∞ 0.8427 . . .

To prove this, use the half-angle formula

cosx = cos 2(x/2) = 2 cos2 x/2− 1

to rewrite

gn(x) =
√

n

4π
cos2n x/2.

Now
´ π
−π cos2n x/2 = 2

´ π/2
−π/2 cos2n x and we can use complex exponentials to rewrite

cos2n x:

cos2n x = (
eix + e−ix

2
)2n

=
1

22n

2n∑
m=0

(
2n
m

)
e(2n−2m)ix

=
1

22n

n∑
k=−n

(
2n
n+ k

)
cos 2kx

Rescaling, we find that gn(x) is a sum of terms of the form(
2n
n+k

)
22n

√
n

4π
cos 2kx

For fixed k, and large n, Stirling’s formula tells us that the terms approach

1
2π

cos 2kx.

Regardless, the integral of cos 2kx from −π/2 to π/2 vanishes for all integers k,
so we are left with only the constant term, which integrates out to 1.

ˆ π

−π
gn(x) ∼ 1.

To find out how much of the weight is concentrated near the origin, it helps to
use a power series expansion.

log cosx = −x
2

2
+ x4r(x)
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for some smooth function r, soˆ 2/
√
n

−2/
√
n

gn(x)dx =
√

n

4π

ˆ 2/
√
n

−2/
√
n

cos2n(
x

2
)dx

=
1√
π

ˆ 1

−1

cos2n(
y√
n

)dy where y =
√
nx/2

=
1√
π

ˆ 1

−1

exp
[
−y2 + y4/n2r(y/

√
n)
]
dy

∼ 1√
π

ˆ 1

−1

exp
[
−y2

]
dy

∼ 0.8427 . . .

�

This is secretly the same argument used to prove the central limit theorem!!


