LECTURE 2

1. Outline

Fourier decompositions of periodic functions.

- Why is the Fourier decomposition possible?
- cardinality: how many functions are there $I=[-\pi, \pi] \rightarrow \mathbb{R}$? $\left(\aleph_{2}\right.$, a real numbers worth of real numbers) Continuous? (\aleph_{1} a natural numbers worth of real numbers) Differentiable?
- How can we represent functions as lists of numbers, in such a way that simple/important/common functions have simple/short representations?
- Record values at points, linear interpolate/spline.
* simple functions require as much data as terribly complex ones.
- Polynomial approx
* but simple reps of polynomials aren't the simplest functions, especially if we have a periodic input. $\sin x$ should be simple, not x^{2}.
- Trigonometric approx
* $\sum b_{n} \cos n x+c_{n} \sin n x$
- View the space of functions as a vector space (adding coordinate-wise in linear rep, polynomial rep, trigonometric rep)
* looking for a basis.
- Why is the Fouier decomposition plausible?
- sinusoids form an algebra, so we can get products
* use double angle formulas, any other ideas you have to express $\sin ^{2} x=(1-\cos 2 x) / 2, \sin 2 x \cos x$ as sums of $\sin n x$ and $\cos n x$.
* to prove this, helps to $\frac{1}{2}\left(e^{i n x}+e^{-i n x}\right)=\cos x$ and $\frac{1}{2 i}\left(e^{i n x}-\right.$ $\left.e^{-i n x}\right)=\sin x$. Allow ourself to have complex coefficients.
- shifted sines: $\sin (x+\pi / 3)=\frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x$
- Can get a Dirac delta-ish function, with a single spike in one place. ideas?
* first try to center it at $\pi \cdot \sin ^{2 N} x$ has two (positive) peaks, add $\sin ^{2 N+1} x$ to keep just one.
* or $\sqrt{\frac{n}{4 \pi}}\left(\frac{1+\cos x}{2}\right)^{n}$ to make it positive first.
- Why does the Fourier decomposition work?
- okay, so we can get all the products of sines and cosines, shifted versions, etc. but why can we approximate/decompose all periodic functions?
- BASIS VECTORS:

$$
f_{n}=\frac{1}{\sqrt{2 \pi}} e^{i n x}
$$

- INNER PRODUCT: need a formula to compute coefficients. in finite dim geometry, use dot product to get coords: e_{1}-coord is $v \bullet e_{1}$. What is the appropriate notion of dot product for functions? Called the L^{2}-norm. For $f, g: I \rightarrow \mathbb{R}$, define

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f g d x
$$

Why is this good? Well, when you dot a function with itself, you should get its magnitude, which I'll call the ENERGY of f :

$$
\|f\|^{2}:=\langle f, f\rangle=\int_{-\pi}^{\pi}|f|^{2} d x
$$

The only function with 0 energy is the 0 function. Triangle inequality from the same for regular absolute value. Also, dot product should be linear in each input, which this integral is.

* For $f, g: I \rightarrow \mathbb{C}$, add complex conjugation:

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f \bar{g} d x
$$

- Our basis vectors are ORTHONORMAL:
$\left\langle f_{n}, f_{m}\right\rangle=\frac{1}{2 \pi} \int e^{i n x} e^{-i m x} d x=\frac{1}{2 \pi} \int e^{i(n-m) x} d x= \begin{cases}1 & \text { if } n=m \\ 0 & \text { otherwise }\end{cases}$
* If we were right and $f=\sum a_{n} f_{n}$, then $\left\langle f, f_{m}\right\rangle=\sum a_{n}\left\langle f_{n}, f_{m}\right\rangle=$ a_{m}. So we can find the fourier components of f via integration:

$$
a_{m}=\left\langle f, f_{m}\right\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f e^{-i m x} d x
$$

* Because of Dirac delta approx, if f is continuous, periodic, and orthogonal to the span of the $\left(f_{n}\right)$, then $f=0$!
* PROTOTHEOREM: If $\sum a_{n} f_{n}$ is a function, then $f-\sum a_{n} f_{n}$ is too, and is orthogonal to thes pan of the $\left(f_{n}\right)$ so zero.
* But the sum might not converge, if we're handed a function f and compute all the a_{n}, is it the case that $f=\frac{1}{\sqrt{2 \pi}} \sum a_{n} e^{i n x}$? We don't know anything about the a_{i}. We know something:
$0 \leq\left\langle f-\sum a_{n} f_{n}, f-\sum a_{n} f_{n}\right\rangle=|f|^{2}-2 \sum\left|a_{n}\right|^{2}+\sum\left|a_{n}\right|^{2}$
Well, do the partial sums approximate f ? Leaving out something about Cauchy, we can compute the norm of

$$
f-\sum_{n=-N}^{N} a_{n} f_{n}=|f|^{2}-\sum_{n=-N}^{N}\left|a_{n}\right|^{2}
$$

- Why is the Fourier decomposition useful?
- interaction with differentiation. If $f=\sum a_{n} e^{i n x}$, then $f^{\prime}(x)=\sum i n a_{n} e^{i n x}$; $a_{n} \rightsquigarrow i n a_{n}$, no limits necessary!
$-C^{2}$ gives pointwise convergence.
* Bessel for $f^{\prime \prime}$ gives $a_{n}<1 / n^{2}$ gives uniform convergence to a function, and we can use above.

Theorem. If $f: I \rightarrow \mathbb{C}$ is a smooth, periodic function, then $f=\sum a_{n} e^{i n x}$ for some constants $a_{n} \in \mathbb{C}$, and

$$
\int_{\pi}^{\pi}|f|^{2} d x=\sum\left|a_{n}\right|^{2}
$$

Fourier

- hilbert space description: periodic functions form an infinite-dimensional vector space. the set of square-integrable ones, though, have a countable basis (!) given by
- question: how many functions are there on S^{1} ? How about if we ask them to be continuous? Differentiable? Integrable? Square integrable?
- Daniel Bernulli noticed, about 1750 , in his study of the acoustic problem of vibrating strings, that the general vibration of a string could be represetned by the superposition of those sine vibrations which corresponded to the fundamental tone and the overtones. The development into a trigonometric series of the function which represents the form of the string.
- fourier had the balls to believe
- sines, cosines, and sums provide examples of periodic functions
- even $\sin ^{2} x=(1-\cos 2 x) / 2$
- fourier decomposition: any function can be approximated arbitrarily well by a sum of sines and cosines
$-f=\sum a_{n} \sin (n x)+b_{n} \cos (n x)$ only positive n since \cos is even, \sin is odd
- but sines and cosines are real and imaginary parts of complex numbers, we can write

$$
\cos x=\frac{e^{i x}+e^{-i x}}{2} \text { and } \sin x=\frac{e^{i x}-e^{-i x}}{2 i}
$$

- They form an algebra!
- interaction with differentiation
- nice to have an orthonormal basis, so you can use coordinates and inner products will be coordinate-wise dot products

Proposition 1. The set $B=\{\sin n x, \cos n x\}_{n=0,1,2, \ldots}$ forms a complete basis for the Hilbert space $L^{2}[-\pi, \pi]$.

Proof. First, we construct a test function in the span of B which has a sharp spike at one point (more than $2 / 3$ of its mass in an arbitrarily small window). Consider

$$
g_{n}(x)=\sqrt{\frac{n}{4 \pi}}\left(\frac{1+\cos x}{2}\right)^{n}
$$

Note that g_{n} is everywhere positive, with a peak at 0 . For n large, $\int g_{n} \simeq 1$. And

$$
\int_{-1 / \sqrt{n}}^{1 / \sqrt{n}} g_{n} \rightarrow_{n \rightarrow \infty} 0.8427 \ldots
$$

To prove this, use the half-angle formula

$$
\cos x=\cos 2(x / 2)=2 \cos ^{2} x / 2-1
$$

to rewrite

$$
g_{n}(x)=\sqrt{\frac{n}{4 \pi}} \cos ^{2 n} x / 2
$$

Now $\int_{-\pi}^{\pi} \cos ^{2 n} x / 2=2 \int_{-\pi / 2}^{\pi / 2} \cos ^{2 n} x$ and we can use complex exponentials to rewrite $\cos ^{2 n} x$:

$$
\begin{aligned}
\cos ^{2 n} x & =\left(\frac{e^{i x}+e^{-i x}}{2}\right)^{2 n} \\
& =\frac{1}{2^{2 n}} \sum_{m=0}^{2 n}\binom{2 n}{m} e^{(2 n-2 m) i x} \\
& =\frac{1}{2^{2 n}} \sum_{k=-n}^{n}\binom{2 n}{n+k} \cos 2 k x
\end{aligned}
$$

Rescaling, we find that $g_{n}(x)$ is a sum of terms of the form

$$
\frac{\binom{2 n}{n+k}}{2^{2 n}} \sqrt{\frac{n}{4 \pi}} \cos 2 k x
$$

For fixed k, and large n, Stirling's formula tells us that the terms approach

$$
\frac{1}{2 \pi} \cos 2 k x
$$

Regardless, the integral of $\cos 2 k x$ from $-\pi / 2$ to $\pi / 2$ vanishes for all integers k, so we are left with only the constant term, which integrates out to 1.

$$
\int_{-\pi}^{\pi} g_{n}(x) \sim 1
$$

To find out how much of the weight is concentrated near the origin, it helps to use a power series expansion.

$$
\log \cos x=-\frac{x^{2}}{2}+x^{4} r(x)
$$

for some smooth function r, so

$$
\begin{aligned}
\int_{-2 / \sqrt{n}}^{2 / \sqrt{n}} g_{n}(x) d x & =\sqrt{\frac{n}{4 \pi}} \int_{-2 / \sqrt{n}}^{2 / \sqrt{n}} \cos ^{2 n}\left(\frac{x}{2}\right) d x \\
& =\frac{1}{\sqrt{\pi}} \int_{-1}^{1} \cos ^{2 n}\left(\frac{y}{\sqrt{n}}\right) d y \quad \text { where } y=\sqrt{n} x / 2 \\
& =\frac{1}{\sqrt{\pi}} \int_{-1}^{1} \exp \left[-y^{2}+y^{4} / n^{2} r(y / \sqrt{n})\right] d y \\
& \sim \frac{1}{\sqrt{\pi}} \int_{-1}^{1} \exp \left[-y^{2}\right] d y \\
& \sim 0.8427 \ldots
\end{aligned}
$$

This is secretly the same argument used to prove the central limit theorem!!

