
THE LAPLACE TRANSFORM

1. Fourier Transform

Recall the Fourier transform: given a periodic signal f : [−π, π] → C, we can
split it into component frequencies

f =
1
2π

∞�

n=−∞
aneinx,

where
an =

ˆ π

−π
f(x)e−inxdx.

Unfortunately, most signals we encounter in real life do not have perfect periodicity,
even a “pure” pitch is really a mixture of nearby frequencies. We usually have some
signal f : R → R, and could compute any of it’s frequency components:

f̂(ξ) =
ˆ ∞
−∞

f(x)e−iξxdx.

This new function f̂ is the Fouier transform of f . If f eventually dies off (in
particular if f ∈ L2(R) ∩ L1(R)), then these integrals are finite, and we can write
our original signal as an integral of its pure frequency components:

f(x) =
1
2π

ˆ
f̂(ξ)eiξxdξ.

You can think of this integral as a limit of discrete fourier transforms, on longer
and longer intervals, allowing for slower and slower oscillations (smaller frequencies).
Just like a bandlimited signal is determined by its samples, a compactly supported
function is determined by sufficiently fine samples of its fourier transform.

1.1. An aside. What is the fourier transform of a pure exponential function, einx?
The integral never converges, but its conventional to say that the answer is a delta
distribution δ(n − ξ). What about a pure exponential which is truncated after a
few cycles, say einxχ[0,2πk]. An explicit computation gives

f̂ = i
1− e−2πikξ

n− ξ

Away from ξ = n, this is just the wave 1−e2πikξ scaled down by 1
n−ξ . A zero of the

wave is placed on top of the pole, so near n = ξ, we are computing the derivative of
the numerator at n = ξ, which gives 2πk. Somehow, this acts like a delta function,
as k →∞, though it never has a narrow envelope.

We would like to use fourier series to develop the fourier transform, prove its
invertibility. If we truncate a function to [−πk, πk] and divide the integral by k,
then we recover the original fourier transform for functions with period 2π at the
samples ξ ∈ kZ. Looking at the samples ξ ∈ Z allows us to see functions with
period 2πk. Any compactly supported
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2. Continue, Analytically

If we’ve learned anything in this class, it’s that expanding our domain from
the real numbers to the complex numbers can clarify things. And here, with the
Fourier transform, we’re taking our function f and integrating it against a purely
imaginary exponential: eiξx to get a new function of ξ. Let’s think of this as
a function defined on the imaginary axis: we take in the imaginary number iξand
compute

´∞
−∞ f(x)e−iξxdx. But we could just as easily take in any complex number

z and compute

F (z) =
ˆ ∞
−∞

f(x)e−zxdx.

Since e−zx is a holomorphic function of z, and the integral is essentially a sum
(with weights given by f), it turns out that F (z) is holomorphic! If you remember
Lucas’s lecture on Fourier transform, where we learned that knowing the value
of a holomorphic function on a single strip can be enough to determine it, we’re
explicitly constructing the unique holomorphic extension of the Fourier transform.

This function F is the Laplace transform. But before we write it as a definition,
let’s change notation a bit: since we’re thinking of f as a signal, as a function of
time, we usually write t instead of x,and the convention is also to write s for z (since
it makes people who are only thinking of real values for s a bit more comfortable).
To wit:

Definition. Let f : R → R be a function. The Laplace Transform of f(t) is the
function of a complex variable

F (s) =
ˆ ∞
−∞

f(t)e−stdt.

Our shiny new extension of the Fourier transform has some great properties:
• The map f � F is linear: L[af + bg] = aL[f ] + bL[g]
• It is (basically) injective L[f ] = L[g] then f = g almost everywhere.
• The Laplace transform F is holomorphic everywhere it’s defined.

But that domain of definition can be a bit narrow. Consider the constant function
f = 1. The integral

F (z) =
ˆ ∞
−∞

e−zxdx

is defined for no values of z! None! For if z = a + bi, we’re trying to computeˆ ∞
−∞

e−axe−ibxdx.

If a > 0, then the magnitude of the integra
nd gets huge as x → −∞, and if a < 0, then the magnitude of the integrand

gets huge as x → ∞. If a = 0, then the magnitude is always 1, and the integral
still fails to converge. So we’ve found a nowhere defined holomorphic function.

Luckily, most signals we get in the real world don’t extend infinitely into the
past (or the future, for that matter), we only begin to measure them at some time
t = t0. The prototypical example is the unit step function

u(t) =

�
1 t > 0
0 t < 0
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The value at t = 0 can be left undefined, or chosen arbitrarily. This represents
a switch turning on, or a phenomenon tuned in (“oh, let’s start looking at that
steady signal.”) Think of it as a smooth function whose value changes from 0 to 1
in a faster time scale than we’re observing, like the velocity of a ball struck off a
tee with a bat (we ignore the strange things happening in a slight switch before a
steady current begins to flow.) Its Laplace transform is

U(s) =
ˆ ∞
−∞

u(t)e−stdt

=
ˆ ∞

0
e−stdt

=
e−st

−s

���
∞

0

=
1
s

if �(s) > 0

If �(s) ≤ 0, then the integral does not converge. Miraculously, though, the function
we get for s > 0 can be extended to an analytic function on the entire complex
plane, less the origin. Compare to the Fourier transform, which cannot be defined:
we get nonconvergent integrals ˆ ∞

0
e−iξtdt.

In other words, the infinity we get should be thought of as
´∞
0 1dt = lims→0

1
s .

The basic functions for which we want to compute the Laplace transform are
then not functions like eat or sin(x) or tn which are defined on the whole real line,
but versions of those functions which get switched on at some time, which we take
to be 0. Here we go

Example 1. Exponential shift. We compute L(eat) by answering a more general
question: if L[f ] = F (s), what is L(eatf)?

L[eatf ] =
ˆ

eatfe−stdt

=
ˆ

fe−(s−a)tdt

= F (s− a)

In particular, L[eat] = 1
s−a .

Example 2. Sinusoids. We can write cos(ωt) as 1
2 (eiωt + e−iωt), so

cos(ωt) =
1
2
(eiωt + e−iωt) � 1

2
(

1
s− iω

+
1

s + iw
) =

s

s2 + ω2
.

Similarly,

sin(ωt) � ω

s2 + ω2
.

We saw that the Fourier transform interacted very nicely with differential equa-
tions, and derivatives in general. So does the more general Laplace transform, for
the same reason: integration by parts.
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L[f �] =
ˆ

f �(t)e−stdt

= fe−st
���
∞

−∞
−
ˆ ∞
−∞

f(−se−st)dt

= sL[f ]

as long as f vanishes for early enough times. We need to be a little bit careful
when dealing with discontuities (which we basically always have, due to the switch
flipping at 0). In particular, the derivative of the unit step function u, though it
vanishes everywhere by at 0, is definitely not 0. Indeed, the fundamental theorem
of calculus tells us that ˆ �

−�
u�(t) = u(�)− u(−�) = 1.

We call the derivative of u the unit step impulse function or Dirac delta function,
and write it δ(t). If we think of u as a smooth function going very quickly from
0 to 1, then its derivative δ zooms from 0 just before time 0 to some huge value
just around 0, then back down to 0 just after. It looks like a very narrow tall spike
centered at 0, with total integral one. We can find the Laplace transform of δ from
the rule for derivatives we just computed:

L[δ] = sL[u] = s/s = 1.

3. Inverting the Laplace Transform

If f has a fourier transform, then its Laplace transform is defined on the imagi-
nary axis, and we may compute

1
2πi

ˆ +i∞

s=−i∞
F (s)estds =

1
2π

ˆ ∞
−∞

F (iξ)eiξtdξ = f(t).

If f does not have a fourier transform, if it doesn’t decay fast enough, then damp
it, consider fσ = fe−σt for some large σ. As long as f does not grow super-
exponentially, then our fσ has a fourier transform f̂σ, and the fourier inversion
formula states that

fσ(t) =
1
2π

ˆ ∞
−∞

f̂σ(ξ)eiξtdξ

Now the Laplace transform of fσ = fe−σt is F (s + σ) where F is the Laplace
transform of f , and Fσ(iξ) = f̂σ(ξ). So we have

f(t)e−σt =
1
2π

ˆ ∞
−∞

F (iξ + σ)eiξtdξ.

Change variables to s = iξ + σ, and bring the eσt under the integral to find

f(t) =
1

2πi

ˆ σ+i∞

s=σ−i∞
F (s)estds.

Miraculously the answer is the same no matter which σ we used, so long as fσ

has an fourier transform. That’s because F is defined and holomorphic for such
s = σ + iξ, and so is Fest. Hence the contour we integrate along can be shifted left
and right through this region of holomorphicity without affecting the value of the
integral.
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4. Differential Equations

The unit impulse function is very useful in studying differential equations. For
example, consider a spring with a mass on it, a damped harmonic oscillator, gov-
erned by the differential equation

mx��(t) + cx�(t) + kx(t) = 0.

It’s sitting at rest for t < 0, and then at time 0, we whack it with a hammer,
imparting a impulse of 1, so that it has unit momentum at time �. Then its
momentum p(t) = mx�(t) jumps from 0 to 1, and can be modelled as a unit step
function. Thus p�(t) = mx��(t) is the derivatve of the unit step function, ie the unit
impulse δ(t). So to understand how the spring moves in response to our thwack,
we need to solve the differential equation

mx��(t) + cx�(t) + kx(t) = δ(t).

Take the Laplace transform of each side to get

ms2X(s) + csX(s) + kX(s) = 1,

or
X(s) =

1
ms2 + cs + k

.

Suppose we can factor the polynomial P (s) = ms2 + cs + k as m(s − a)(s − b).
Then we can rewrite

X(s) =
1

m(b− a)

�
1

s− a
− 1

s− b

�
.

But we know which function has that Laplace transform. It’s just a sum of expo-
nentials:

x(t) =
1

m(b− a)
�
eas − ebs

�
u.

For example, if there is no damping (c = 0), then a, b = ±i
�

k/m, and

x(t) =
1

2
√

km
sin(

�
k/mt)

for t > 0 and 0 for t < 0. If c > 0 and the discriminant of P , c2 − 4mk is negative,
then there is damped oscillatory behavior, while if the discriminant is positive,
c2 > 4mk, then x is a sum of purely real, and decaying, exponentials, and there is
no oscillation at all.

The Laplace transform is helpful in understanding more general linear differential
equations as well. It turns

P (D)f =
�

anf (n)(t) = g

into a polynomial equation
P (s)F (s) = G(s)

where F and G are the Laplace transforms of f and g, and P (s) is the polynomial�
ansn. To solve the differential equation, all we need to do is compute the inverse

Laplace transform of F (s) = G(s)
P (s) . When g is the unit impulse function, G = 1,

and we’re trying to find a function w such that

W (s) =
1

P (s)
.
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The function W is called the transfer function for the differential equation, and
it’s inverse Laplace transform w(t) is called the fundamental solution.

How do we find the fundamental solution? Using partial fraction decomposition.
A pole in the transfer function to the right of the imaginary axis indicates an
instability in the system, at that frequency.
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