From c2bd2ecbfadd29cdd42952a9c5abda530322ecea Mon Sep 17 00:00:00 2001 From: joshuab <> Date: Tue, 29 Jun 2010 15:20:25 +0000 Subject: tex --- ClassJune26.page | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) (limited to 'ClassJune26.page') diff --git a/ClassJune26.page b/ClassJune26.page index 9bb4ded..8b14dc1 100644 --- a/ClassJune26.page +++ b/ClassJune26.page @@ -70,20 +70,20 @@ projections onto the real and imaginary axis. If we use column vector notation, we have $z = \left(\begin{array}{c} a\\ -b\end{array}\right)\\ +b\end{array}\right) = a\left(\begin{array}{c} 1\\ 0\end{array}\right)+b\left(\begin{array}{c} 0\\ -1\end{array}\right)\\ - = a\cdot1+b\cdot i\\ +1\end{array}\right) + = a\cdot1+b\cdot i = a+bi$ Put another way, we are using $1$ and $i$ as basis vectors. For -example, +example, $\left(\begin{array}{c} 3\\ -2\end{array}\right)=3(\rightarrow)+2(\uparrow)=3+2i$ -and +2\end{array}\right)=3(\rightarrow)+2(\uparrow)=3+2i$ +and $\overset{2}{\nwarrow}=\left(\begin{array}{c} -\sqrt{2}\\ \sqrt{2}\end{array}\right)=-\sqrt{2}(\rightarrow)+\sqrt{2}(\uparrow)=-\sqrt{2}+\sqrt{2}i$ @@ -93,8 +93,8 @@ Polar coordinates represent each complex number by its magnitude and argument, i $i=\uparrow=(1,\pi/2)$ and $\overset{2}{\nwarrow}=(2,3\pi/4)$. The familiar angle addition formula from trigonometry now follows -from the distributive law applied to unit vectors. -$\cos(\theta+\phi)+i\sin(\theta+\phi)=(\cos\theta+i\sin\theta)(\cos\phi+i\sin\phi)=\cos\theta\cos\phi-\sin\theta\sin\phi+i(\cos\theta\sin\phi+\sin\theta\cos\phi)$ +from the distributive law applied to unit vectors. + $\cos(\theta+\phi)+i\sin(\theta+\phi)=(\cos\theta+i\sin\theta)(\cos\phi+i\sin\phi)=\cos\theta\cos\phi-\sin\theta\sin\phi+i(\cos\theta\sin\phi+\sin\theta\cos\phi)$ In the workshop session, you'll use a similar trick to compute triple @@ -139,8 +139,8 @@ As a sanity check, note that $i$ corresponds to $\left(\begin{array}{cc} 0 & -1\end{array}\right)\sim-1$. Another natural transformation of the complex plane is given by squaring, -sending $z\rightsquigarrow z^{2}$. This squares the length of each -vector, and doubles its angle. PICTURE. What does $z\rightsquigarrow z^{n}$ +sending $z\mapsto z^{2}$. This squares the length of each +vector, and doubles its angle. PICTURE. What does $z\mapsto z^{n}$ look like? PICTURE. Another key example is the exponential map. Recall the power series -- cgit v1.2.3